zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 3 von 3.

Publikationen in Druck

Anwer, U.; Davis, A.; Davis, S. J.; Quint, M. Photoperiod sensing of the circadian clock is controlled by ELF3 and GI BioRxiv (2018) DOI: 10.1101/321794

ELF3 and GI are two important components of the Arabidopsis circadian clock. They are not only essential for the oscillator function but are also pivotal in mediating light inputs to the oscillator. Lack of either results in a defective oscillator causing severely compromised output pathways, such as photoperiodic flowering and hypocotyl elongation. Although single loss of function mutants of ELF3 and GI have been well-studied, their genetic interaction remains unclear. We generated an elf3 gi double mutant to study their genetic relationship in clock-controlled growth and phase transition phenotypes. We found that ELF3 and GI repress growth during the night and the day, respectively. We also provide evidence that ELF3, for which so far only a growth inhibitory role has been reported, can also act as a growth promoter under certain conditions. Finally, circadian clock assays revealed that ELF3 and GI are essential Zeitnehmers that enable the oscillator to synchronize the endogenous cellular mechanisms to external environmental signals. In their absence, the circadian oscillator fails to synchronize to the light-dark cycles even under diurnal conditions. Consequently, clock-mediated photoperiod-responsive growth and development is completely lost in plants lacking both genes, suggesting that ELF3 and GI together convey photoperiod sensing to the central oscillator. Since ELF3 and GI are conserved across flowering plants and represent important breeding and domestication targets, our data highlight the possibility of developing photoperiod-insensitive crops by manipulating the combination of these two key genes.
Publikationen in Druck

Wasternack, C. New Light on Local and Systemic Wound Signaling Trends Plant Sci (2018) DOI: 10.1016/j.tplants.2018.11.009

Electric signaling and Ca2+ waves were discussed to occur in systemic wound responses. Two new overlapping scenarios were identified: (i) membrane depolarization in two special cell types followed by an increase in systemic cytoplasmic Ca2+ concentration ([Ca2+]cyt), and (ii) glutamate sensed by GLUTAMATE RECEPTOR LIKE proteins and followed by Ca2+-based defense in distal leaves.
Publikationen in Druck

Naumann, C.; Müller, J.; Sakhonwasee, S.; Wieghaus, A.; Hause, G.; Heisters, M.; Bürstenbinder, K.; Abel, S. The Local Phosphate Deficiency Response Activates ER Stress-dependent Autophagy Plant Physiol pp.01379.2018, (2018) DOI: 10.1104/pp.18.01379

Inorganic phosphate (Pi) is often a limiting plant nutrient. In members of the Brassicaceae family, such as Arabidopsis thaliana, Pi deprivation reshapes root system architecture to favor topsoil foraging by inhibiting primary root extension and stimulating lateral root formation. Root growth inhibition upon Pi deficiency is triggered by Fe-stimulated, apoplastic ROS generation and cell wall modifications, which impair cell-to-cell communication and meristem maintenance. These processes require LPR1 (LOW PHOSPHATE RESPONSE1), a cell wall-targeted ferroxidase, and PDR2 (PHOSPHATE DEFICIENCY RESPONSE2), the single ER (endoplasmic reticulum)-resident P5-type ATPase, AtP5A, which is thought to control LPR1 secretion or activity. Autophagy is a conserved process involving the vacuolar degradation of cellular components. While the function of autophagy is well established under nutrient starvation (C, N, or S), it remains to be explored under Pi deprivation. Because AtP5A/PDR2 likely functions in the ER stress response, we analyzed the effect of Pi limitation on autophagy. Our comparative study of mutants defective in the local Pi deficiency response, ER stress response, and autophagy demonstrated that ER stress-dependent autophagy is rapidly activated as part of the developmental root response to Pi limitation and requires the genetic PDR2-LPR1 module. We conclude that Pi-dependent activation of autophagy in the root apex is a consequence of local Pi sensing and the associated ER stress response, rather than a means for systemic recycling of the macronutrient.
IPB Mainnav Search