zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Wasternack, C. How Jasmonates Earned their Laurels: Past and Present Journal of Plant Growth Regulation 34 (4), 761-794, (2015) DOI: 10.1007/s00344-015-9526-5

The histories of research regarding all plant hormones are similar. Identification and structural elucidation have been followed by analyses of their biosynthesis, distributions, signaling cascades, roles in developmental or stress response programs, and crosstalk. Jasmonic acid (JA) and its derivatives comprise a group of plant hormones that were discovered recently, compared to auxin, abscisic acid, cytokinins, gibberellic acid, and ethylene. Nevertheless, there have been tremendous advances in JA research, following the general progression outlined above and parallel efforts focused on several other “new” plant hormones (brassinosteroids, salicylate, and strigolactones). This review focuses on historical aspects of the identification of jasmonates, and characterization of their biosynthesis, distribution, perception, signaling pathways, crosstalk with other hormones and roles in plant stress responses and development. The aim is to illustrate how our present knowledge on jasmonates was generated and how that influences current efforts to extend our knowledge.
Publikation

Flores, R.; Gago-Zachert, S.; Serra, P.; Sanjuán, R.; Elena, S. F. Viroids: Survivors from the RNA World? Annual Rev Microbiol 68, 395 - 414, (2014) DOI: 10.1146/annurev-micro-091313-103416

Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario—the so-called RNA world—existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G+ C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
IPB Mainnav Search