zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Winkler, M.; Niemeyer, M.; Hellmuth, A.; Janitza, P.; Christ, G.; Samodelov, S. L.; Wilde, V.; Majovsky, P.; Trujillo, M.; Zurbriggen, M. D.; Hoehenwarter, W.; Quint, M.; Calderón Villalobos, L. I. A. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nature Commun. 8, 15706, (2017) DOI: 10.1038/ncomms15706

Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.
Publikation

Hoehenwarter, W.; Mönchgesang, S.; Neumann, S.; Majovsky, P.; Abel, S.; Müller, J. Comparative expression profiling reveals a role of the root apoplast in local phosphate response BMC Plant Biol. 16 , 106, (2016) DOI: 10.1186/s12870-016-0790-8

Plant adaptation to limited phosphate availability comprises a wide range of responses to conserve and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2) module mediates apoplastic deposition of ferric iron (Fe3+) in the growing root tip during phosphate limitation. Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and callose accumulation, which interfere with cell-to-cell communication and inhibit root growth.
Publikation

Wasternack, C. How Jasmonates Earned their Laurels: Past and Present Journal of Plant Growth Regulation 34 (4), 761-794, (2015) DOI: 10.1007/s00344-015-9526-5

The histories of research regarding all plant hormones are similar. Identification and structural elucidation have been followed by analyses of their biosynthesis, distributions, signaling cascades, roles in developmental or stress response programs, and crosstalk. Jasmonic acid (JA) and its derivatives comprise a group of plant hormones that were discovered recently, compared to auxin, abscisic acid, cytokinins, gibberellic acid, and ethylene. Nevertheless, there have been tremendous advances in JA research, following the general progression outlined above and parallel efforts focused on several other “new” plant hormones (brassinosteroids, salicylate, and strigolactones). This review focuses on historical aspects of the identification of jasmonates, and characterization of their biosynthesis, distribution, perception, signaling pathways, crosstalk with other hormones and roles in plant stress responses and development. The aim is to illustrate how our present knowledge on jasmonates was generated and how that influences current efforts to extend our knowledge.
IPB Mainnav Search