TY - JOUR ID - 2019 TI - Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes JO - Field Crop Res PY - 2016 SP - 150-160 AU - Kowalski, A. M. AU - Gooding, M. AU - Ferrante, A. AU - Slafer, G. A. AU - Orford, S. AU - Gasperini, D. AU - Griffiths, S. VL - 191 UR - http://www.sciencedirect.com/science/article/pii/S0378429016300521 DO - 10.1016/j.fcr.2016.02.026 AB - Reduced height 8 (Rht8) is the main alternative to the GA-insensitive Rht alleles in hot and dry environments where it reduces plant height without yield penalty. The potential of Rht8 in northern-European wheat breeding remains unclear, since the close linkage with the photoperiod-insensitive allele Ppd-D1a is unfavourable in the relatively cool summers. In the present study, two near-isogenic lines (NILs) contrasting for the Rht8/tall allele from Mara in a UK-adapted and photoperiod-sensitive wheat variety were evaluated in trials with varying nitrogen fertiliser (N) treatments and water regimes across sites in the UK and Spain.The Rht8 introgression was associated with a robust height reduction of 11% regardless of N treatment and water regime and the Rht8 NIL was more resistant to root-lodging at agronomically-relevant N levels than the tall NIL. In the UK with reduced solar radiation over the growing season than the site in Spain, the Rht8 NIL showed a 10% yield penalty at standard agronomic N levels due to concomitant reduction in grain number and spike number whereas grain weight and harvest index were not significantly different to the tall NIL. The yield penalty associated with the Rht8 introgression was overcome at low N and in irrigated conditions in the UK, and in the high-temperature site in Spain. Decreased spike length and constant spikelet number in the Rht8 NIL resulted in spike compaction of 15%, independent of N and water regime. The genetic interval of Rht8 overlaps with the compactum gene on 2DS, raising the possibility of the same causative gene. Further genetic dissection of these loci is required.Abbreviations ANOVA, analysis of variance; Y, yield; HI, harvest index; GN, grain number (m−2); SS, spikelet number (spike−1); SN, spike number (m−2); HD, heading date; AN, anthesis; 12L, length of the second internode from the top; 13L, length of the third internode from the top; PAR, photosynthetically active radiation; R: FR, red: far-red light reflectance ratio; RCBD, randomised complete block design A2 - C1 - Molecular Signal Processing ER - TY - JOUR ID - 388 TI - Induction of a new lipoxygenase form in cucumber leaves by salicylic acid or 2,6-dichloroisonicotinic acid JO - Bot. Acta PY - 1997 SP - 101-108 AU - Feussner, I. AU - Fritz, I.G. AU - Hause, B. AU - Ullrich, W.R. AU - Wasternack, C. VL - 110 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1438-8677/issues DO - 10.1111/j.1438-8677.1997.tb00616.x AB - Changes in lipoxygenase (LOX) protein pattern and/or activity were investigated in relation to acquired resistance of cucumber (Cucumis sativus L.) leaves against two powdery mildews, Sphaerotheca fuliginea (Schlecht) Salmon and Erysiphe cichoracearum DC et Merat. Acquired resistance was established by spraying leaves with salicylic acid (SA) or 2,6-dichloroisonicotinic acid (INA) and estimated in whole plants by infested leaf area compared to control plants. SA was more effective than INA. According to Western blots, untreated cucumber leaves contained a 97 kDa LOX form, which remained unchanged for up to 48 h after pathogen inoculation. Upon treatment with SA alone for 24 h or with INA plus pathogen, an additional 95 kDa LOX form appeared which had an isoelectric point in the alkaline range. For the induction of this form, a threshold concentration of 1 mM SA was required, higher SA concentrations did not change LOX-95 expression which remained similar between 24 h and 96 h but further increased upon mildew inoculation. Phloem exudates contained only the LOX-97 form, in intercellular washing fluid no LOX was detected. dichloroisonicotinic localization revealed LOX protein in the cytosol of the mesophyll cells without differences between the forms. A2 - C1 - Molecular Signal Processing; Cell and Metabolic Biology ER -