TY - JOUR ID - 2422 TI - Determination of sex by jasmonate JO - J Integr Plant Biol PY - 2020 SP - 162-164 AU - Wasternack, C. VL - 62 UR - https://dx.doi.org/10.1111/jipb.12840 DO - 10.1111/jipb.12840 AB - A2 - C1 - Molecular Signal Processing ER - TY - JOUR ID - 1801 TI - Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation JO - BMC Genomics PY - 2015 SP - 488 AU - Ryan,P. T. AU - Ó’Maoiléidigh, D. S. AU - Drost, H.-G. AU - Kwaśniewska, D. AU - Gabel, A. AU - Grosse, I. AU - Graciet, E. AU - Quint, M. AU - Wellmer, F. VL - 16 UR - http://www.biomedcentral.com/content/pdf/s12864-015-1699-6.pdf DO - 10.1186/s12864-015-1699-6 AB - Background:The formation of flowers is one of the main model systems to elucidate the molecular mechanisms that control developmental processes in plants. Although several studies have explored gene expression during flower development in the model plant Arabidopsis thalianaon a genome-wide scale, a continuous series of expression data from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to closethis information gap and to generate a reference dataset for stage-specific gene expression during flower formation.Results:Using a floral induction system, we collected floral buds at 14 different stages from the time of initiation until maturation. Using whole-genome microarray analysis, we identified 7,405 genes that exhibit rapid expression changes during flower development. These genes comprise many known floral regulators and we found that the expression profiles for these regulators match their known expression patterns, thus validating the dataset. We analyzed groups ofco-expressed genes for over-represented cellular and developmental functions through Gene Ontology analysis and found that they could be assigned specific patterns of activities, which are in agreement with the progression of flower development. Furthermore, by mapping binding sites of floral organ identity factors onto our dataset, we were able to identify gene groups that are likely predominantly under control of these transcriptional regulators. We furtherfound that the distribution of paralogs among groups of co-expressed genes varies considerably, with genes expressed predominantly at early and intermediate stages of flower development showing the highest proportion of such genes.Conclusions:Our results highlight and describe the dynamic expression changes undergone by a large numberof genes during flower development. They further provide a comprehensive reference dataset for temporal gene expression during flower formation and we demonstrate that it can be used to integrate data from other genomics approaches such as genome-wide localization studies of transcription factor binding sites. A2 - C1 - Molecular Signal Processing ER - TY - JOUR ID - 1304 TI - Phosphate sensing in root development JO - Curr Opin Plant Biol PY - 2011 SP - 303-309 AU - Abel, S. VL - 14 UR - https://dx.doi.org/10.1016/j.pbi.2011.04.007 DO - 10.1016/j.pbi.2011.04.007 AB - Phosphate (Pi) and its anhydrides constitute major nodes in metabolism. Thus, plant performance depends directly on Pi nutrition. Inadequate Pi availability in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi usage and acquisition. The sensory mechanisms that monitor environmental Pi and transmit the nutritional signal to adjust root development have increasingly come into focus. Recent transcriptomic analyses and genetic approaches have highlighted complex antagonistic interactions between external Pi and Fe bioavailability and have implicated the stem cell niche as a target of Pi sensing to regulate root meristem activity. A2 - C1 - Molecular Signal Processing ER - TY - JOUR ID - 831 TI - Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions JO - Biol. Chem PY - 2007 SP - 145-153 AU - Schilling, S. AU - Stenzel, I. AU - von Bohlen, A. AU - Wermann, M. AU - Schulz, K. AU - Demuth, H.-U. AU - Wasternack, C. VL - 388 UR - DO - 10.1515/BC.2007.016 AB - A2 - C1 - Molecular Signal Processing ER - TY - JOUR ID - 854 TI - Auxin signaling JO - Curr Opin Plant Biol PY - 2006 SP - 448-453 AU - Quint, M. AU - Gray, W.M. VL - 9 UR - DO - 10.1016/j.pbi.2006.07.006 AB - Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins also function as auxin receptors, a potentially complete, and surprisingly simple, signaling pathway from perception to transcriptional response is now before us. However, understanding how this seemingly simple pathway controls the myriad of specific auxin responses remains a daunting challenge, and compelling evidence exists for SCFTIR1/AFB-independent auxin signaling pathways. A2 - C1 - Molecular Signal Processing ER -