TY - JOUR ID - 2195 TI - Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana JO - BMC Plant Biol PY - 2017 SP - 114 AU - Ibañez, C. AU - Poeschl, Y. AU - Peterson, T. AU - Bellstädt, J. AU - Denk, K. AU - Gogol-Döring, A. AU - Quint, M. AU - Delker, C. VL - 17 UR - https://dx.doi.org/10.1186/s12870-017-1068-5 DO - 10.1186/s12870-017-1068-5 AB - BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components. A2 - C1 - Molecular Signal Processing ER - TY - JOUR ID - 1638 TI - Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress JO - Ecotoxicol Environ Saf PY - 2013 SP - 46-53 AU - Elleuch, A. AU - Chaâbene, Z. AU - Grubb, D.C. AU - Drira, N. AU - Mejdoub, H. AU - Khemakhem, B. VL - 98 UR - DO - 10.1016/j.ecoenv.2013.09.028 AB - The effects of copper on germination and growth of fenugreek (Trigonella foenum-graecum ) was investigated separately using different concentrations of CuSO4. The germination percentage and radical length had different responses to cupric ions: the root growth increased with increasing copper concentration up to 1 mM Cu+2Cu2+ and was inhibited thereafter. In contrast, the germination percentage was largely unaffected by concentrations of copper below 10 mM.The reduction in root growth may have been due to inhibition of hydrolytic enzymes such as amylase. Indeed, the average total amylolytic activity decreased from the first day of treatment with [Cu+2Cu2+] greater than 1 mM. Furthermore, copper affected various plant growth parameters. Copper accumulation was markedly higher in roots as compared to shoots. While both showed a gradual decrease in growth, this was more pronounced in roots than in leaves and in stems. Excess copper induced an increase in the rate of hydrogen peroxide (H2O2) production and lipid peroxidation in all plant parts, indicating oxidative stress. This redox stress affected leaf chlorophyll and carotenoid content which decreased in response to augmented Cu levels. Additionally, the activities of proteins involved in reactive oxygen species (ROS) detoxification were affected. Cu stress elevated the ascorbate peroxidase (APX) activity more than two times at 10 mM CuSO4. In contrast, superoxide dismutase (SOD) and catalase (CAT) levels showed only minor variations, only at 1 mM Cu+2Cu2+. Likewise, total phenol and flavonoid contents were strongly induced by low concentrations of copper, consistent with the role of these potent antioxidants in scavenging ROS such as H2O2, but returned to control levels or below at high [Cu+2Cu2+]. Taken together, these results indicate a fundamental shift in the plant response to copper toxicity at low versus high concentrations. A2 - C1 - Molecular Signal Processing ER - TY - JOUR ID - 699 TI - Genetic transformation of barley to modify expression of a 13-lipoxygenase JO - Acta Biol. Szeged PY - 2005 SP - 33-34 AU - Sharma, V.K. AU - Monostori, T. AU - Hause, B. AU - Maucher, H. AU - Göbel, C. AU - Hornung, E. AU - Hänsch, R. AU - Bittner, F. AU - Wasternack, C. AU - Feussner, I. AU - Mendel, R.R. AU - Schulze, J. VL - 49 UR - http://www2.sci.u-szeged.hu/ABS/2005/Acta%20HP/4933.pdf AB - Immature scutella of barley were transformed with cDNA coding for a 13-li-poxygenase of barley (LOX-100) via particle bombardment. Regenerated plants were tested by PAT-assay, Western-analysis and PCR-screening. Immunocytochemical assay of T0 plants showed expression of the LOX cDNA both in the chloroplasts and in the cytosol, depending on the presence of the chloroplast signal peptide sequences in the cDNA. A few transgenic plants containing higher amounts of LOX-derived products have been found. These are the candidates for further analysis concerning pathogen resistance. A2 - C1 - Molecular Signal Processing; Cell and Metabolic Biology ER - TY - CHAP ID - 431 TI - Jasmonates - Biosynthesis and role in stress responses and developmental processes T2 - Programmed Cell Death and Related Processes in Plants PB - Academic Press, New York PY - 2004 SP - 143-154 AU - Wasternack, C. VL - 0 UR - AB - A2 - Nooden, L.D. C1 - Molecular Signal Processing ER -