zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: sort ascending Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Lehmann, J.; Atzorn, R.; Brückner, C.; Reinbothe, S.; Leopold, J.; Wasternack, C.; Parthier, B.; Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments Planta 197, 156-192, (1995) DOI: 10.1007/BF00239952

The accumulation of abundant proteins and their respective transcripts, induced by 10−4 M cisabscisic acid or 10−5 M jasmonic acid methyl ester, was studied in barley (Hordeum vulgare L.) leaf segments and compared to that resulting from osmotic stress caused by floating the segments on solutions of sorbitol, glucose, polyethyleneglycol (PEG)-6000 or NaCl. Osmotic stress or treatment with abscisic acid led to the synthesis of novel proteins which were identical to jasmonateinduced proteins (JIPs) with respect to immunological properties and molecular masses. The most prominent polypeptides were characterized by molecular masses of 66, 37 and 23 kDa and were newly synthesized. Whereas sorbitol, mannitol, sucrose, glucose and PEG provoked the synthesis of JIPs, 2deoxyglucose and NaCl did not. We provide evidence that the synthesis of JIPs induced by osmotic stress is directly correlated with a preceding rise in endogenous jasmonates. These jasmonates, quantified by an enzyme immunoassay specific for (−)jasmonic acid and its aminoacid conjugates, increased remarkably in leaf segments treated with sorbitol, glucose or other sugars. In contrast, no increase in jasmonates could be observed in tissues exposed to salts (NaCl). The results strengthen the hypothesis that the accumulation of jasmonates, probably by de-novo synthesis, is an intermediate and essential step in a signalling pathway between (osmotic) stress and activation of genes coding for polypeptides of high abundance.
Publikation

Feussner, I.; Hause, B.; Nellen, A.; Wasternack, C.; Kindl, H.; Lipid-body lipoxygenase is expressed in cotyledons during germination prior to other lipoxygenase forms Planta 198, 288-293, (1996) DOI: 10.1007/BF00206255

Lipid bodies are degraded during germination. Whereas some proteins, e.g. oleosins, are synthesized during the formation of lipid bodies of maturating seeds, a new set of proteins, including a specific form of lipoxygenase (LOX; EC 1.13.11.12), is detectable in lipid bodies during the stage of fat degradation in seed germination. In cotyledons of cucumber (Cucumis sativus L.) seedlings at day 4 of germination, the most conspicuous staining with anti-LOX antibodies was observed in the cytosol. At very early stages of germination, however, the LOX form present in large amounts and synthesized preferentially was the lipid-body LOX. This was demonstrated by immunocytochemical staining of cotyledons from 1-h and 24-h-old seedlings: the immunodecoration of sections of 24-h-old seedlings with anti-LOX antiserum showed label exclusively correlated with lipid bodies of around 3 μm in diameter. In accordance, the profile of LOX protein isolated from lipid bodies during various stages of germination showed a maximum at day 1. By measuring biosynthesis of the protein in vivo we demonstrated that the highest rates of synthesis of lipid-body LOX occurred at day 1 of germination. The early and selective appearance of a LOX form associated with lipid bodies at this stage of development is discussed.
Publikation

Görschen, E.; Dunaeva, M.; Hause, B.; Reeh, I.; Wasternack, C.; Parthier, B.; Expression of the ribosome-inactivating protein JIP60 from barley in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation Planta 202, 470-478, (1997) DOI: 10.1007/s004250050151

In this paper we report the in-planta activity of the ribosome-inactivating protein JIP60, a 60-kDa jasmonate-induced protein from barley (Hordeum vulgare L.), in transgenic tobacco (Nicotiana tabacum L.) plants. All plants expressing the complete JIP60 cDNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited conspicuous and similar phenotypic alterations, such as slower growth, shorter internodes, lanceolate leaves, reduced root development, and premature senescence of leaves. Microscopic inspection of developing leaves showed a loss of residual meristems and higher degree of vacuolation of mesophyll cells as compared to the wild type. When probed with an antiserum which was immunoreactive against both the N- and the C-terminal half of JIP60, a polypeptide with a molecular mass of about 30 kDa, most probably a processed JIP60 product, could be detected. Phenotypic alterations could be correlated with the differences in the detectable amount of the JIP60 mRNA and processed JIP60 protein. The protein biosynthesis of the transformants was characterized by an increased polysome/monosome ratio but a decreased in-vivo translation activity. These findings suggest that JIP60 perturbs the translation machinery in planta. An immunohistological analysis using the JIP60 antiserum indicated that the immunoreactive polypeptide(s) are located mainly in the nucleus of transgenic tobacco leaf cells and to a minor extent in the cytoplasm.
Publikation

Wasternack, C.; Hause, B.; Stressabwehr und Entwicklung: Jasmonate — chemische Signale in Pflanzen Biologie in unserer Zeit 30, 312-320, (2000) DOI: 10.1002/1521-415X(200011)30:6<312::AID-BIUZ312>3.0.CO;2-8

Chemische Signale wurden bereits im 19.Jahrhundert als Regulatoren von Wachstum und Entwicklung der Pflanzen postuliert.In den letzten 70 Jahren wurde die Wirkungsweise der klassischen Pflanzenhormone wie der Auxine, Gibberelline, Cytokinine, Ethylen und Abscisinsäure aufgeklärt. Doch erst im letzten Jahrzehnt entdeckte man die Bedeutung der Brassinosteroide, der Peptidhormone und der Jasmonate.
Publikation

Wasternack, C.; Hause, B.; Blütenduft, Abwehr, Entwicklung: Jasmonsäure - ein universelles Pflanzenhormon Biologie in unserer Zeit 44, 164-171, (2014) DOI: 10.1002/biuz.201410535

Pflanzen müssen gegen vielfältige biotische und abiotische Umwelteinflusse eine Abwehr aufbauen. Aber gleichzeitig müssen sie wachsen und sich vermehren. Jasmonate sind neben anderen Hormonen ein zentrales Signal bei der Etablierung von Abwehrmechanismen, aber auch Signal von Entwicklungsprozessen wie Blüten‐ und Trichombildung, sowie der Hemmung von Wachstum. Biosynthese und essentielle Komponenten der Signaltransduktion von JA und seinem biologisch aktiven Konjugat JA‐Ile sind gut untersucht. Der Rezeptor ist ein Proteinkomplex, der “JA‐Ile‐Wahrnehmung” mit proteasomalem Abbau von Repressorproteinen verbindet. Dadurch können positiv agierende Transkriptionsfaktoren wirksam werden und vielfältige Genexpressionsänderungen auslösen. Dies betrifft die Bildung von Abwehrproteinen, Enzymen der JA‐Biosynthese und Sekundärstoffbildung, und Proteinen von Signalketten und Entwicklungsprozessen. Die Kenntnisse zur JA‐Ile‐Wirkung werden in Landwirtschaft und Biotechnologie genutzt.
IPB Mainnav Search