zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.


Ludwig-Müller, J.; Denk, K.; Cohen, J. D.; Quint, M. An Inhibitor of Tryptophan-Dependent Biosynthesis of Indole-3-Acetic Acid Alters Seedling Development in Arabidopsis J Plant Growth Regul 29, 242-248, (2010) DOI: 10.1007/s00344-009-9128-1

Although polar transport and the TIR1-dependent signaling pathway of the plant hormone auxin/indole-3-acetic acid (IAA) are well characterized, understanding of the biosynthetic pathway(s) leading to the production of IAA is still limited. Genetic dissection of IAA biosynthetic pathways has been complicated by the metabolic redundancy caused by the apparent existence of several parallel biosynthetic routes leading to IAA production. Valuable complementary tools for genetic as well as biochemical analysis of auxin biosynthesis would be molecular inhibitors capable of acting in vivo on specific or general components of the pathway(s), which unfortunately have been lacking. Several indole derivatives have been previously identified to inhibit tryptophan-dependent IAA biosynthesis in an in vitro system from maize endosperm. We examined the effect of one of them, 6-fluoroindole, on seedling development of Arabidopsis thaliana and tested its ability to inhibit IAA biosynthesis in feeding experiments in vivo. We demonstrated a correlation of severe developmental defects or growth retardation caused by 6-fluoroindole with significant downregulation of de novo synthesized IAA levels, derived from the stable isotope-labeled tryptophan pool, upon treatment. Hence, 6-fluoroindole shows important features of an inhibitor of tryptophan-dependent IAA biosynthesis both in vitro and in vivo and thus may find use as a promising molecular tool for the identification of novel components of the auxin biosynthetic pathway(s).

Serra, P.; Hashemian, S.M.B.; Pensabene-Bellavia, G.; Gago, S.; Durán-Vila, N. An artifical chimeric derivative of Citrus viroid V involves the terminal left domain in pathogenicity Molecular Plant Pathology 10, 515-522, (2009) DOI: 10.1111/j.1364-3703.2009.00553.x


Abel, S.; Nguyen, M.D.; Theologis, A. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana Journal of Biological Chemistry 270, 19093-19099, (1995)

1-Aminocyclopropane-1-carboxylic acid (ACC) synthase is the key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene. The enzyme is encoded by a divergent multigene family in Arabidopsis thaliana, comprising at least five genes, ACS1-5 (Liang, X., Abel, S., Keller, J. A., Shen, N. F., and Theologis, A.(1992) Proc. Natl. Acad. Sci. U. S. A. 89, 11046-11050). In etiolated seedlings, ACS4 is specifically induced by indoleacetic acid (IAA). The response to IAA is rapid (within 25 min) and insensitive to protein synthesis inhibition, suggesting that the ACS4 gene expression is a primary response to IAA. The ACS4 mRNA accumulation displays a biphasic dose-response curve which is optimal at 10 μM of IAA. However, IAA concentrations as low as 100 nM are sufficient to enhance the basal level of ACS4 mRNA. The expression of ACS4 is defective in the Arabidopsis auxin-resistant mutant lines axr1-12, axr2-1, and aux1-7. ACS4 mRNA levels are severely reduced in axr1-12 and axr2-1 but are only 1.5-fold lower in aux1-7. IAA inducibility is abolished in axr2-1. The ACS4 gene was isolated and structurally characterized. The promoter contains four sequence motifs reminiscent of functionally defined auxin-responsive cis-elements in the early auxin-inducible genes PS-IAA4/5 from pea and GH3 from soybean. Conceptual translation of the coding region predicts a protein with a molecular mass of 53,795 Da and a theoretical isoelectric point of 8.2. The ACS4 polypeptide contains the 11 invariant amino acid residues conserved between aminotransferases and ACC synthases from various plant species. An ACS4 cDNA was generated by reverse transcriptase-polymerase chain reaction, and the authenticity was confirmed by expression of ACC synthase activity in Escherichia coli.
IPB Mainnav Search