zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

De Nardi, B.; Dreos, R.; Del Terra, L.; Martellossi, C.; Asquini, E.; Tornincasa, P.; Gasperini, D.; Pacchioni, B.; Rathinavelu, R.; Pallavicini, A.; Graziosi, G.; Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance Genome 49, 1594-1605, (2006) DOI: 10.1139/g06-125

Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
Publikation

Quint, M.; Melchinger, A. E.; Dußle, C. M.; Lübberstedt, T.; Breeding for virus resistance in maize Genetika 32, 529-545, (2000)

Sugarcane mosaic virus (SCMV) is an important disease in maize, which is emerging in Germany since 1983. Using this pest as a model for the inheritance of oligogenic traits, we clarified the genetic ba­sis for resistance in early maturing European maize germplasm. Screening of 122 adapted European inbred lines identified three completely resistant lines, which were used for further analyses. The genetics of SCMV resis­tance was investigated by allelism tests in field experiments combined with QTL and bulked segregant analyses (BSA) on the marker level. QTL analyses revealed the presence of two major genes Scm1 and Scm2 plus three minor QTL. Involvement of Scm1 and Scm2 in the inheritance of SCMV resistance could be confirmed by BSA in a second cross. Breeders can make use of tightly linked STS markers for marker-assisted selection (MAS) as well as our SCMV resistant flint lines to improve their elite germplasm. Currently, recurrent backcrossing with phenotypic selection is the most appropriate and cost effective breeding method. With de­creasing costs of DNA chip technology, MAS can be competitive with phenotypic selection in the near future. Further objectives of our research are the isolation and cloning of Scm1 and Scm2. To achieve this goal we follow two different approaches. (1) Positional cloning based on more than 500 AFLP primer combinations resulted in Scm1/Scm2 specific markers with a resolution of approximately 0.2 cM in the respective re­gions. (2) Resistance gene analogues (RGAs), cosegregating with the tar­get genes are used to identify further candidate genes for transformation experiments.
Publikation

Kogel, K.-H.; Ortel, B.; Jarosch, B.; Atzorn, R.; Schiffer, R.; Wasternack, C.; Resistance in barley against the powdery mildew fungus (Erysiphe graminis f.sp.hordei) is not associated with enhanced levels of endogenous jasmonates Eur. J. Plant Pathol. 101, 319-332, (1995) DOI: 10.1007/BF01874788

Onset of acquired resistance of barley (Hordeum vulgare) chemically induced by 2,6-dichloroisonicotinic acid (DCINA) correlated with the accumulation of mRNA homologous to cDNA pHvJ256 which codes for a soluble leaf-thionin with a Mr. of 6 kDa [Wasternacket al., 1994a]. In the present work, we extend this finding by showing that the thionin transcript also accumulated following treatment of barley with the resistance-inducing compounds 3,5-dichlorosalicylic acid (DCSA), salicylic acid (SA), and an extract fromBacillus subtilis. The polypeptide showed antifungal activity against the biotrophic cereal pathogensErysiphe graminis f.sp.hordei andPuccinia graminis f.sp.tritici which may indicate a possible role in the mechanism of acquired resistance in barley. A thionin transcript hybridizing to pHvJ256 accumulated also in response to application of jasmonates, or treatments that elevated endogenous amounts of the plant growth substance, pointing to the possibility that signaling mediating defense responses in barley involves jasmonates. However, a topical spray application of jasmonic acid (JA) or jasmonate methyl ester (JM) did not protect barley leaves against infection byE. graminis. Performing a kinetic analysis by an enzyme immunoassay specific for (−)-JA, (−)-JM, and its amino acid conjugates, accumulation of jasmonates was detected in osmotically stressed barley but not at the onset of chemically induced or genetically based resistance governed by the powdery mildew resistance genesMlg, Mla 12, ormlo 5. Furthermore, the jasmonate-inducible proteins JIP-23 and JIP-60 were strongly induced following JM- but not DCINA-treatment or inoculation withE. graminis. Hence, in barley, no indications were found in favour for the previously proposed model of a lipid-based signaling pathway via jasmonates mediating expression of resistance in plants against pathogens.
IPB Mainnav Search