zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.


Jablonická, V.; Ziegler, J.; Vatehová, Z.; Lišková, D.; Heilmann, I.; Obložinský, M.; Heilmann, M. Inhibition of phospholipases influences the metabolism of wound-induced benzylisoquinoline alkaloids in Papaver somniferum L. J Plant Physiol 223, 1-8, (2018) DOI: 10.1016/j.jplph.2018.01.007

Benzylisoquinoline alkaloids (BIAs) are important secondary plant metabolites and include medicinally relevant drugs, such as morphine or codeine. As the de novo synthesis of BIA backbones is (still) unfeasible, to date the opium poppy plant Papaver somniferum L. represents the main source of BIAs. The formation of BIAs is induced in poppy plants by stress conditions, such as wounding or salt treatment; however, the details about regulatory processes controlling BIA formation in opium poppy are not well studied. Environmental stresses, such as wounding or salinization, are transduced in plants by phospholipid-based signaling pathways, which involve different classes of phospholipases. Here we investigate whether pharmacological inhibition of phospholipase A2 (PLA2, inhibited by aristolochic acid (AA)) or phospholipase D (PLD; inhibited by 5-fluoro-2-indolyl des-chlorohalopemide (FIPI)) in poppy plants influences wound-induced BIA accumulation and the expression of key biosynthetic genes. We show that inhibition of PLA2 results in increased morphinan biosynthesis concomitant with reduced production of BIAs of the papaverine branch, whereas inhibition of PLD results in increased production of BIAs of the noscapine branch. The data suggest that phospholipid-dependent signaling pathways contribute to the activation of morphine biosynthesis at the expense of the production of other BIAs in poppy plants. A better understanding of the effectors and the principles of regulation of alkaloid biosynthesis might be the basis for the future genetic modification of opium poppy to optimize BIA production.

Calderón Villalobos, L.I.; Tan, X.; Zheng, N.; Estelle, M. Auxin perception - structural insights CSH Perspect. Biol 2(7), (2010)

The identity of the auxin receptor(s) and the mechanism of auxin perception has been a subject of intense interest since the discovery of auxin almost a century ago. The development of genetic approaches to the study of plant hormone signaling led to the discovery that auxin acts by promoting degradation of transcriptional repressors called Aux/IAA proteins. This process requires a ubiquitin protein ligase (E3) called SCFTIR1 and related SCF complexes. Surprisingly, auxin works by directly binding to TIR1, the F-box protein subunit of this SCF. Structural studies demonstrate that auxin acts like a molecular glue, to stabilize the interaction between TIR1 and the Aux/IAA substrate. These exciting results solve an old problem in plant biology and reveal new mechanisms for E3 regulation and hormone perception.

Serra, P.; Hashemian, S.M.B.; Pensabene-Bellavia, G.; Gago, S.; Durán-Vila, N. An artifical chimeric derivative of Citrus viroid V involves the terminal left domain in pathogenicity Molecular Plant Pathology 10, 515-522, (2009)

IPB Mainnav Search