zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Schulze, A.; Zimmer, M.; Mielke, S.; Stellmach, H.; Melnyk, C. W.; Hause, B.; Gasperini, D. Wound-Induced Shoot-to-Root Relocation of JA-Ile Precursors Coordinates Arabidopsis Growth Mol Plant 12, 1383-1394, (2019) DOI: 10.1016/j.molp.2019.05.013

Multicellular organisms rely on the movement of signaling molecules across cells, tissues, and organs to communicate among distal sites. In plants, localized leaf damage activates jasmonic acid (JA)-dependent transcriptional reprogramming in both harmed and unharmed tissues. Although it has been indicated that JA species can translocate from damaged into distal sites, the identity of the mobile compound(s), the tissues through which they translocate, and the effect of their relocation remain unknown. Here, we found that following shoot wounding, the relocation of endogenous jasmonates through the phloem is essential to initiate JA signaling and stunt growth in unharmed roots of Arabidopsis thaliana. By employing grafting experiments and hormone profiling, we uncovered that the hormone precursor cis-12-oxo-phytodienoic acid (OPDA) and its derivatives, but not the bioactive JA-Ile conjugate, translocate from wounded shoots into undamaged roots. Upon root relocation, the mobile precursors cooperatively regulated JA responses through their conversion into JA-Ile and JA signaling activation. Collectively, our findings demonstrate the existence of long-distance translocation of endogenous OPDA and its derivatives, which serve as mobile molecules to coordinate shoot-to-root responses, and highlight the importance of a controlled redistribution of hormone precursors among organs during plant stress acclimation.
Publikation

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Publikation

Hoehenwarter, W.; Mönchgesang, S.; Neumann, S.; Majovsky, P.; Abel, S.; Müller, J. Comparative expression profiling reveals a role of the root apoplast in local phosphate response BMC Plant Biol 16 , 106, (2016) DOI: 10.1186/s12870-016-0790-8

BackgroundPlant adaptation to limited phosphate availability comprises a wide range of responses to conserve and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2) module mediates apoplastic deposition of ferric iron (Fe3+) in the growing root tip during phosphate limitation. Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and callose accumulation, which interfere with cell-to-cell communication and inhibit root growth.ResultsWe took advantage of the opposite phosphate-conditional root phenotype of the phosphate deficiency response 2 mutant (hypersensitive) and low phosphate response 1 and 2 double mutant (insensitive) to investigate the phosphate dependent regulation of gene and protein expression in roots using genome-wide transcriptome and proteome analysis. We observed an overrepresentation of genes and proteins that are involved in the regulation of iron homeostasis, cell wall remodeling and reactive oxygen species formation, and we highlight a number of candidate genes with a potential function in root adaptation to limited phosphate availability. Our experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated, apoplastic iron redistribution, but not intracellular iron uptake and iron storage, triggers phosphate-dependent root growth modulation. We further highlight expressional changes of several cell wall-modifying enzymes and provide evidence for adjustment of the pectin network at sites of iron accumulation in the root.ConclusionOur study reveals new aspects of the elaborate interplay between phosphate starvation responses and changes in iron homeostasis. The results emphasize the importance of apoplastic iron redistribution to mediate phosphate-dependent root growth adjustment and suggest an important role for citrate in phosphate-dependent apoplastic iron transport. We further demonstrate that root growth modulation correlates with an altered expression of cell wall modifying enzymes and changes in the pectin network of the phosphate-deprived root tip, supporting the hypothesis that pectins are involved in iron binding and/or phosphate mobilization.
Publikation

Zayneb, C.; Bassem, K.; Zeineb, K.; Grubb, C. D.; Noureddine, D.; Hafedh, M.; Amine, E. Physiological responses of fenugreek seedlings and plants treated with cadmium Environ Sci Pollut Res 22, 10679-10689, (2015) DOI: 10.1007/s11356-015-4270-8

The bioaccumulation efficiency of cadmium (Cd) by fenugreek (Trigonella foenum-graecum) was examined using different concentrations of CdCl2. The germination rate was similar to control except at 10 mM Cd. However, early seedling growth was quite sensitive to the metal from the lowest Cd level. Accordingly, amylase activity was reduced substantially on treatment of seeds with 0.5, 1, and 10 mM Cd. Cadmium also affected various other plant growth parameters. Its accumulation was markedly lower in shoots as compared to roots, reducing root biomass by almost 50 %. Plants treated with 1 and 5 mM Cd presented chlorosis due to a significant reduction in chlorophyll b especially. Furthermore, at Cd concentrations greater than 0.1 mM, plants showed several signs of oxidative stress; an enhancement in root hydrogen peroxide (H2O2) level and in shoot malondialdehyde (MDA) content was observed. Conversely, antioxidant enzyme activities (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) increased in various plant parts. Likewise, total phenolic and flavonoid contents reached their highest values in the 0.5 mM Cd treatment, consistent with their roles in quenching low concentrations of reactive oxygen species (ROS). Consequently, maintaining oxidant and antioxidant balance may permit fenugreek to hyperaccumulate Cd and allow it to be employed in extremely Cd polluted soils for detoxification purposes.
Publikation

Serra, P.; Hashemian, S.M.B.; Pensabene-Bellavia, G.; Gago, S.; Durán-Vila, N. An artifical chimeric derivative of Citrus viroid V involves the terminal left domain in pathogenicity Molecular Plant Pathology 10, 515-522, (2009) DOI: 10.1111/j.1364-3703.2009.00553.x

0
IPB Mainnav Search