zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 11.

Publikation

Antolín-Llovera, M.; Petutsching, E. K.; Ried, M. K.; Lipka, V.; Nürnberger, T.; Robatzek, S.; Parniske, M.; Knowing your friends and foes - plant receptor-like kinases as initiators of symbiosis or defence New Phytol. 204, 791-802, (2014) DOI: 10.1111/nph.13117

The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane‐localized receptor complexes. A critical step in their activation is ligand‐induced homo‐ or hetero‐oligomerization of leucine‐rich repeat (LRR)‐ and/or lysin motif (LysM) receptor‐like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen‐associated molecular patterns (PAMPs), including the bacterial flagellin‐derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont‐derived (lipo)‐chitooligosaccharides. The structurally related chitin‐oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM‐RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin‐like domain (MLD)‐LRR‐RLK Symbiosis Receptor‐like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR‐ and LysM‐mediated signalling, the involvement of MLD‐LRR‐RLKs in symbiosis and defence, and the role of endocytosis in RLK function.
Publikation

Farmer, E. E.; Gasperini, D.; Acosta, I. F.; The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding New Phytol. 204, 282-288, (2014) DOI: 10.1111/nph.12897

Jasmonates are lipid mediators that control defence gene expression in response to wounding and other environmental stresses. These small molecules can accumulate at distances up to several cm from sites of damage and this is likely to involve cell‐to‐cell jasmonate transport. Also, and independently of jasmonate synthesis, transport and perception, different long‐distance wound signals that stimulate distal jasmonate synthesis are propagated at apparent speeds of several cm min–1 to tissues distal to wounds in a mechanism that involves clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes. A search for jasmonate synthesis enzymes that might decode these signals revealed LOX6, a lipoxygenase that is necessary for much of the rapid accumulation of jasmonic acid at sites distal to wounds. Intriguingly, the LOX6 promoter is expressed in a distinct niche of cells that are adjacent to mature xylem vessels, a location that would make these contact cells sensitive to the release of xylem water column tension upon wounding. We propose a model in which rapid axial changes in xylem hydrostatic pressure caused by wounding travel through the vasculature and lead to slower, radially dispersed pressure changes that act in a clade 3 GLR‐dependent mechanism to promote distal jasmonate synthesis.
Publikation

Stumpe, M.; Göbel, C.; Faltin, B.; Beike, A. K.; Hause, B.; Himmelsbach, K.; Bode, J.; Kramell, R.; Wasternack, C.; Frank, W.; Reski, R.; Feussner, I.; The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology New Phytol. 188, 740-749, (2010) DOI: 10.1111/j.1469-8137.2010.03406.x

Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)‐12‐oxo‐phytodienoic acid (cis‐(+)‐OPDA), were isolated from the moss Physcomitrella patens.Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13‐hydroperoxy linolenic acid (13‐HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12‐hydroperoxy arachidonic acid (12‐HPETE).In protonema and gametophores the occurrence of cis‐(+)‐OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis‐(+)‐OPDA was detected.Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.
Publikation

Clarke, S. M.; Cristescu, S. M.; Miersch, O.; Harren, F. J. M.; Wasternack, C.; Mur, L. A. J.; Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana New Phytol. 182, 175-187, (2009) DOI: 10.1111/j.1469-8137.2008.02735.x

The cpr5‐1 Arabidopsis thaliana mutant exhibits constitutive activation of salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signalling pathways and displays enhanced tolerance of heat stress (HS).cpr5‐1 crossed with jar1‐1 (a JA‐amino acid synthetase) was compromised in basal thermotolerance, as were the mutants opr3 (mutated in OPDA reductase3) and coi1‐1 (affected in an E3 ubiquitin ligase F‐box; a key JA‐signalling component). In addition, heating wild‐type Arabidopsis led to the accumulation of a range of jasmonates: JA, 12‐oxophytodienoic acid (OPDA) and a JA‐isoleucine (JA‐Ile) conjugate. Exogenous application of methyl jasmonate protected wild‐type Arabidopsis from HS.Ethylene was rapidly produced during HS, with levels being modulated by both JA and SA. By contrast, the ethylene mutant ein2‐1 conferred greater thermotolerance.These data suggest that JA acts with SA, conferring basal thermotolerance while ET may act to promote cell death.
Bücher und Buchkapitel

Dorka, R.; Miersch, O.; Hause, B.; Weik, P.; Wasternack, C.; Chronobiologische Phänomene und Jasmonatgehalt bei Viscum album L. 49-66, (2009)

0
Publikation

Miersch, O.; Neumerkel, J.; Dippe, M.; Stenzel, I.; Wasternack, C.; Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling New Phytol. 177, 114-127, (2008) DOI: 10.1111/j.1469-8137.2007.02252.x

In potato 12‐hydroxyjasmonic acid (12‐OH‐JA) is a tuber‐inducing compound. Here, it is demonstrated that 12‐OH‐JA, as well as its sulfated and glucosylated derivatives, are constituents of various organs of many plant species. All accumulate differentially and usually to much higher concentrations than jasmonic acid (JA).In wounded tomato leaves, 12‐OH‐JA and its sulfated, as well as glucosylated, derivative accumulate after JA, and their diminished accumulation in wounded leaves of the JA‐deficient mutants spr2 and acx1 and also a JA‐deficient 35S::AOCantisense line suggest their JA‐dependent formation.To elucidate how signaling properties of JA/JAME (jasmonic acid methyl ester) are affected by hydroxylation and sulfation, germination and root growth were recorded in the presence of the different jasmonates, indicating that 12‐OH‐JA and 12‐hydroxyjasmonic acid sulfate (12‐HSO4‐JA) were not bioactive. Expression analyses for 29 genes showed that expression of wound‐inducible genes such as those coding for PROTEINASE INHIBITOR2, POLYPHENOL OXIDASE, THREONINE DEAMINASE or ARGINASE was induced by JAME and less induced or even down‐regulated by 12‐OH‐JA and 12‐HSO4‐JA. Almost all genes coding for enzymes in JA biosynthesis were up‐regulated by JAME but down‐regulated by 12‐OH‐JA and 12‐HSO4‐JA.The data suggest that wound‐induced metabolic conversion of JA/JAME into 12‐OH‐JA alters expression pattern of genes including a switch off in JA signaling for a subset of genes.
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Stenzel, I.; Goetz, S.; Feussner, I.; Miersch, O.; Jasmonate signaling in tomato – The input of tissue-specific occurrence of allene oxide cyclase and JA metabolites (Benning C., Ollrogge, J.). 107-111, (2007)

0
Bücher und Buchkapitel

Weichert, H.; Maucher, H.; Hornung, E.; Wasternack, C.; Feussner, I.; Shift in Fatty Acid and Oxylipin Pattern of Tomato Leaves Following Overexpression of the Allene Oxide Cyclase 275-278, (2003) DOI: 10.1007/978-94-017-0159-4_64

Polyunsaturated fatty acids (PUFAs) are a source of numerous oxidation products, the oxylipins. In leaves, α-linolenic acid (α-LeA) is the preferential substrate for lipid peroxidation reactions. This reaction may be catalyzed either by a 9-lipoxygenase (9-LOX) or by a 13-LOX and oxygen is inserted regioselectively as well as stereospecifically leading to formation of 13S- or 9S-hydroperoxy octadecatrienoic acid (13-/9-HPOT; Brash, 1999). At least, seven different enzyme families or reaction branches within the LOX pathway can use these HPOTs or other hydroperoxy PUFAs leading to (i) keto-PUFAs (LOX); (ii) epoxy hydroxy-PUFAs (epoxy alcohol synthase, EAS); (iii) octadecanoids and jasmonates (allene oxide synthase, AOS); (iv) leaf aldehydes and leaf alcohols (hydroperoxide lyase, HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs (divinyl ether synthase, DES); and (vii) epoxy- or dihydrodiol-PUFAs (peroxygenase, PDX; Fig. 1; Feussner and Wasternack, 2002).
Bücher und Buchkapitel

Stumpe, M.; Stenzel, I.; Weichert, H.; Hause, B.; Feussner, I.; The Lipoxygenase Pathway in Mycorrhizal Roots of Medicago Truncatula 287-290, (2003) DOI: 10.1007/978-94-017-0159-4_67

Mycorrhizas are by far the most frequent occurring beneficial symbiotic interactions between plants and fungi. Species in >80% of extant plant families are capable of establishing an arbuscular mycorrhiza (AM). In relation to the development of the symbiosis the first molecular modifications are those associated with plant defense responses, which seem to be locally suppressed to levels compatible with symbiotic interaction (Gianinazzi-Pearson, 1996). AM symbiosis can, however, reduce root disease caused by several soil-borne pathogens. The mechanisms underlying this protective effect are still not well understood. In plants, products of the enzyme lipoxygenase (LOX) and the corresponding downstream enzymes, collectively named LOX pathway (Fig. 1B), are involved in wound healing, pest resistance, and signaling, or they have antimicrobial and antifungal activity (Feussner and Wasternack, 2002). The central reaction in this pathway is catalyzed by LOXs leading to formation of either 9- or 13-hydroperoxy octadeca(di/trien)oic acids (9/13-HPO(D/T); Brash, 1999). Thus LOXs may be divided into 9- and 13-LOXs (Fig. 1A). Seven different reaction branches within this pathway can use these hydroperoxy polyenoic fatty acids (PUFAs) leading to (i) keto PUFAs by a LOX; (ii) epoxy hydroxy-fatty acids by an epoxy alcohol synthase (EAS); (iii) octadecanoids and jasmonates via allene oxide synthase (AOS); (iv) leaf aldehydes and leaf alcohols via fatty acid hydroperoxide lyase (HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs via divinyl ether synthase (DES); and (vii) epoxy- or dihydrodiolPUFAs via peroxygenase (PDX; Feussner and Wasternack, 2002). AOS, HPL and DES belong to one subfamily of P450-containing enzymes, the CYP74 family (Feussner and Wasternack, 2002). Here, the involvement of this CYP74 enzyme family in mycorrhizal roots of M. truncatula during early stages of AM symbiosis formation was analyzed.
Bücher und Buchkapitel

Kramell, R.; Porzel, A.; Miersch, O.; Schneider, G.; Characterization of Isoleucine Conjugates of Cucurbic Acid Isomers by Reversed-Phase and Chiral High-Performance Liquid Chromatography 77-78, (1998)

0
IPB Mainnav Search