zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Wasternack, C. How Jasmonates Earned their Laurels: Past and Present Journal of Plant Growth Regulation 34 (4), 761-794, (2015) DOI: 10.1007/s00344-015-9526-5

The histories of research regarding all plant hormones are similar. Identification and structural elucidation have been followed by analyses of their biosynthesis, distributions, signaling cascades, roles in developmental or stress response programs, and crosstalk. Jasmonic acid (JA) and its derivatives comprise a group of plant hormones that were discovered recently, compared to auxin, abscisic acid, cytokinins, gibberellic acid, and ethylene. Nevertheless, there have been tremendous advances in JA research, following the general progression outlined above and parallel efforts focused on several other “new” plant hormones (brassinosteroids, salicylate, and strigolactones). This review focuses on historical aspects of the identification of jasmonates, and characterization of their biosynthesis, distribution, perception, signaling pathways, crosstalk with other hormones and roles in plant stress responses and development. The aim is to illustrate how our present knowledge on jasmonates was generated and how that influences current efforts to extend our knowledge.
Publikation

Abel, S. Phosphate sensing in root development Curr Opin Plant Biol 14, 303-309, (2011) DOI: 10.1016/j.pbi.2011.04.007

Phosphate (Pi) and its anhydrides constitute major nodes in metabolism. Thus, plant performance depends directly on Pi nutrition. Inadequate Pi availability in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi usage and acquisition. The sensory mechanisms that monitor environmental Pi and transmit the nutritional signal to adjust root development have increasingly come into focus. Recent transcriptomic analyses and genetic approaches have highlighted complex antagonistic interactions between external Pi and Fe bioavailability and have implicated the stem cell niche as a target of Pi sensing to regulate root meristem activity.
Bücher und Buchkapitel

Dorka, R.; Miersch, O.; Hause, B.; Weik, P.; Wasternack, C. Chronobiologische Phänomene und Jasmonatgehalt bei <i>Viscum album</i> L. (Scheer, R.; Bauer, R.; Bekker, A.; Berg, P. A.; Fintelmann, V.). KVC-Verlag Essen 49-56, (2009) ISBN: 978-3-933351-82

0
Publikation

Quint, M.; Gray, W.M. Auxin signaling Curr Opin Plant Biol 9, 448-453, (2006)

Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins also function as auxin receptors, a potentially complete, and surprisingly simple, signaling pathway from perception to transcriptional response is now before us. However, understanding how this seemingly simple pathway controls the myriad of specific auxin responses remains a daunting challenge, and compelling evidence exists for SCFTIR1/AFB-independent auxin signaling pathways.
IPB Mainnav Search