zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 9 von 9.

Bücher und Buchkapitel

Niemeyer, M.; Parra, J. O. F.; Calderón Villalobos, L. I. A.; An in vitro assay to recapitulate hormone-triggered and SCF-mediated protein ubiquitylation (Lois, L.M., Trujillo, M.). Methods Mol. Biol. 2581, 43-56, (2023) ISBN: 978-1-0716-2783-9 DOI: 10.1007/978-1-0716-2784-6_4

Signaling proteins trigger a sequence of molecular switches in the cell, which permit development, growth, and rapid adaptation to changing environmental conditions. SCF-type E3 ubiquitin ligases recognize signaling proteins prompting changes in their fate, one of these being ubiquitylation followed by degradation by the proteasome. SCFs together with their ubiquitylation targets (substrates) often serve as phytohormone receptors, responding and/or assembling in response to fluctuating intracellular hormone concentrations. Tracing and understanding phytohormone perception and SCF-mediated ubiquitylation of proteins could provide powerful clues on the molecular mechanisms utilized for plant adaptation. Here, we describe an adaptable in vitro system that uses recombinant proteins and enables the study of hormone-triggered SCF-substrate interaction and the dynamics of protein ubiquitylation. This system can serve to predict the requirements for protein recognition and to understand how phytohormone levels have the power to control protein fate.
Bücher und Buchkapitel

Hellmuth, A.; Calderón Villalobos, L. I. A.; Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors (Lois, L. M. & Matthiesen, R., eds.). Methods Mol. Biol. 1450, 23-34, (2016) ISBN: 978-1-4939-3759-2 DOI: 10.1007/978-1-4939-3759-2_3

In receptor–ligand interactions, dissociation constants provide a key parameter for characterizing binding. Here, we describe filter-based radioligand binding assays at equilibrium, either varying ligand concentrations up to receptor saturation or outcompeting ligand from its receptor with increasing concentrations of ligand analogue. Using the auxin coreceptor system, we illustrate how to use a saturation binding assay to determine the apparent dissociation constant (K D ′ ) for the formation of a ternary TIR1–auxin–AUX/IAA complex. Also, we show how to determine the inhibitory constant (Ki) for auxin binding by the coreceptor complex via a competition binding assay. These assays can be applied broadly to characterize a one-site binding reaction of a hormone to its receptor.
Publikation

Vandenborre, G.; Miersch, O.; Hause, B.; Smagghe, G.; Wasternack, C.; Van Damme, E. J.; Spodoptera littoralis-Induced Lectin Expression in Tobacco Plant Cell Physiol. 50, 1142-1155, (2009) DOI: 10.1093/pcp/pcp065

The induced defense response in plants towards herbivores is mainly regulated by jasmonates and leads to the accumulation of so-called jasmonate-induced proteins. Recently, a jasmonate (JA) inducible lectin called Nicotiana tabacum agglutinin or NICTABA was discovered in tobacco (N. tabacum cv Samsun) leaves. Tobacco plants also accumulate the lectin after insect attack by caterpillars. To study the functional role of NICTABA, the accumulation of the JA precursor 12-oxophytodienoic acid (OPDA), JA as well as different JA metabolites were analyzed in tobacco leaves after herbivory by larvae of the cotton leafworm (Spodoptera littoralis) and correlated with NICTABA accumulation. It was shown that OPDA, JA as well as its methyl ester can trigger NICTABA accumulation. However, hydroxylation of JA and its subsequent sulfation and glucosylation results in inactive compounds that have lost the capacity to induce NICTABA gene expression. The expression profile of NICTABA after caterpillar feeding was recorded in local as well as in systemic leaves, and compared to the expression of several genes encoding defense proteins, and genes encoding a tobacco systemin and the allene oxide cyclase, an enzyme in JA biosynthesis. Furthermore, the accumulation of NICTABA was quanti-fied after S. littoralis herbivory and immunofluorescence microscopy was used to study the localization of NICTABA in the tobacco leaf.
Publikation

Vigliocco, A.; Alemano, S.; Miersch, O.; Alvarez, D.; Abdala, G.; Endogenous jasmonates in dry and imbibed sunflower seeds from plants grown at different soil moisture contents Seed Sci. Res. 17, 91-98, (2007) DOI: 10.1017/S0960258507708371

In this study, we characterized two sunflower (Helianthus annuus L.) lines with differential sensitivity to drought, the sensitive line B59 and the tolerant line B71. Using both lines, we compared the content of endogenous jasmonates (JAs) in dry and imbibed seeds from plants grown under irrigation and drought. Jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), 11-hydroxyjasmonate (11-OH-JA) and 12-hydroxyjasmonate (12-OH-JA) were detected in dry and imbibed sunflower seeds. Seeds from plants grown under drought had a lower content of total JAs and exhibited higher germination percentages than seeds from irrigated plants, demonstrating that environmental conditions have a strong influence on the progeny. OPDA and 12-OH-JA were the main compounds found in dry seeds of both lines. Imbibed seeds showed an enhanced amount of total JAs with respect to dry seeds produced by plants grown in both soil moisture conditions. Imbibition triggered a dramatic OPDA increase in the embryo, suggesting a role of this compound in germination. We conclude that JAs patterns vary during sunflower germination and that the environmental conditions experienced by the mother plant modify the hormonal content of the seed progeny.
Publikation

Lannoo, N.; Vandenborre, G.; Miersch, O.; Smagghe, G.; Wasternack, C.; Peumans, W. J.; Van Damme, E. J. M.; The Jasmonate-Induced Expression of the Nicotiana tabacum Leaf Lectin Plant Cell Physiol. 48, 1207-1218, (2007) DOI: 10.1093/pcp/pcm090

Previous experiments with tobacco (Nicotiana tabacum L. cv Samsun NN) plants revealed that jasmonic acid methyl ester (JAME) induces the expression of a cytoplasmic/nuclear lectin in leaf cells and provided the first evidence that jasmonates affect the expression of carbohydrate-binding proteins in plant cells. To corroborate the induced accumulation of relatively large amounts of a cytoplasmic/nuclear lectin, a detailed study was performed on the induction of the lectin in both intact tobacco plants and excised leaves. Experiments with different stress factors demonstrated that the lectin is exclusively induced by exogeneously applied jasmonic acid and JAME, and to a lesser extent by insect herbivory. The lectin concentration depends on leaf age and the position of the tissue in the leaf. JAME acts systemically in intact plants but very locally in excised leaves. Kinetic analyses indicated that the lectin is synthesized within 12 h exposure time to JAME, reaching a maximum after 60 h. After removal of JAME, the lectin progressively disappears from the leaf tissue. The JAME-induced accumulation of an abundant nuclear/cytoplasmic lectin is discussed in view of the possible role of this lectin in the plant.
Publikation

Fortes, A. M.; Miersch, O.; Lange, P. R.; Malhó, R.; Testillano, P. S.; Risueño, M. d. C.; Wasternack, C.; Pais, M. S.; Expression of Allene Oxide Cyclase and Accumulation of Jasmonates during Organogenic Nodule Formation from Hop (Humulus lupulus var. Nugget) Internodes Plant Cell Physiol. 46, 1713-1723, (2005) DOI: 10.1093/pcp/pci187

A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its stereoisomeric precursor, cis-(+)-12-oxophytodienoic acid (OPDA), which is catalyzed by allene oxide cyclase (AOC, EC 5.3.99.6). A cDNA of AOC was isolated from Humulus lupulus var. Nugget. The ORF of 765 bp encodes a 255 amino acid protein, which carries a putative chloroplast targeting sequence. The recombinant protein without its putative chloroplast target sequence showed significant AOC activity. Previously we demonstrated that wounding induces organogenic nodule formation in hop. Here we show that the AOC transcript level increases in response to wounding of internodes, peaking between 2 and 4 h after wounding. In addition, Western blot analysis showed elevated levels of AOC peaking 24 h after internode inoculation. The AOC increase was accompanied by increased JA levels 24 h after wounding, whereas OPDA had already reached its highest level after 12 h. AOC is mostly present in the vascular bundles of inoculated internodes. During prenodule and nodule formation, AOC levels were still high. JA and OPDA levels decreased down to 10 and 118 pmol (g FW)–1, respectively, during nodule formation, but increased during plantlet regeneration. Double immunolocalization analysis of AOC and Rubisco in connection with lugol staining showed that AOC is present in amyloplasts of prenodular cells and in the chloroplasts of vacuolated nodular cells, whereas meristematic cells accumulated little AOC. These data suggest a role of AOC and jasmonates in organogenic nodule formation and plantlet regeneration from these nodules.
Publikation

Andrade, A.; Vigliocco, A.; Alemano, S.; Miersch, O.; Botella, M. A.; Abdala, G.; Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress Seed Sci. Res. 15, 309-318, (2005) DOI: 10.1079/SSR2005219

Although jasmonates (JAs) are involved in germination and seedling development, the regulatory mechanism of JAs, and their relation with endogenous level modifications in these processes, is not well understood. We report here the detection of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), 11-hydroxyjasmonate (11-OH-JA), 12-hydroxyjasmonate (12-OH-JA) and methyljasmonate (JAME) in unimbibed seeds and seedlings of tomato Lycopersicon esculentum Mill cv. Moneymaker (wild type) and tss1, tss2, tos1 mutants. The main compounds in wild-type and tss1, tss2, tos1 seeds were the hydroxylate-JAs; 12-OH-JA was the major component in dry seeds of the wild type and in tss2 and tos1. The amounts of these derivatives were higher in seeds than in seedlings. Changes in JAs during wild-type and tss1 imbibition were analysed in seeds and the imbibition water. In wild-type imbibed seeds, 11-OH-JA content was higher than in tss1. 12-OH-JA showed a different tendency with respect to 11-OH-JA, with high levels in the wild type at early imbibition. In tss1, levels of 12-OH-JA rose from 24 to 48 h of imbibition. At 72 h of imbibition, when radicles had emerged, the amounts of both hydroxylates in wild-type and tss1 seeds were minimal. An important release of the hydroxylate forms was observed in the imbibition water. 11-OH-JA decreased in the imbibition water of wild-type seeds at 48 h. On the contrary, a high and sustained liberation of this compound was observed in tss1 after 24 h. 12-OH-JA increased in wild-type as well in tss1 until 24 h. Thereafter, a substantial reduction in the content of this compound was registered. NaCl-treated wild-type seedlings increased their 12-OH-JA, but tss1 seedlings increased their JA in response to salt treatment. In tss2 seedlings, NaCl caused a slight decrease in 11-OH-JA and JAME, whereas tos1 seedlings showed a dramatic OPDA and 12-OH-JA decrease in response to salt treatment. Under salt stress the mutant seedlings showed different patterns of JAs according to their differential hypersensitivity to abiotic stress. The JA-hydroxylate forms found, and the differential accumulation of JAs during germination, imbibition and seedling development, as well as their response to NaCl stress, provide new evidence about the control of many developmental processes by JA.
Publikation

Hause, B.; Hause, G.; Kutter, C.; Miersch, O.; Wasternack, C.; Enzymes of Jasmonate Biosynthesis Occur in Tomato Sieve Elements Plant Cell Physiol. 44, 643-648, (2003) DOI: 10.1093/pcp/pcg072

The allene oxide cyclase (AOC) is a plastid-located enzyme in the biosynthesis of the signaling compound jasmonic acid (JA). In tomato, AOC occurs specifically in ovules and vascular bundles [Hause et al. (2000)PlantJ. 24; 113]. Immunocytological analysis of longitudinal sections of petioles and flower stalks revealed the occurrence of AOC in companion cells (CC) and sieve elements (SE). Electron microscopic analysis led to the conclusion that the AOC-containing structures of SE are plastids. AOC was not detected in SE of 35S::AOCantisense plants. The enzymes preceding AOC in JA biosynthesis, the allene oxide synthase (AOS) and the lipoxygenase, were also detected in SE. In situ hybridization showed that the SE are free of AOC-mRNA suggesting AOC protein traffic from CC to SE via plasmodesmata. A control by in situ hybridization of AOS mRNA coding for a protein with a size above the exclusion limit of plasmodesmata indicated mRNA in CC and SE. The data suggest that SE carry the capacity to form 12-oxo-phytodienoic acid, the unique precursor of JA. Together with preferential generation of JA in vascular bundles [Stenzel et al. (2003)Plant J. 33: 577], the data support a role of JA in systemic wound signaling.
Publikation

Hause, B.; Demus, U.; Teichmann, C.; Parthier, B.; Wasternack, C.; Developmental and Tissue-Specific Expression of JIP-23, a Jasmonate-Inducible Protein of Barley Plant Cell Physiol. 37, 641-649, (1996) DOI: 10.1093/oxfordjournals.pcp.a028993

Developmental expression of a 23 kDa jasmonate-induced protein (JIP-23) of barley leaves (Hordeum vulgare cv. Salome) was studied by measuring the time-dependent accumulation of transcript and protein during germination. Tissue-specific expression of JIP-23 was analyzed immunocytochemically and by in situ hybridizations, respectively. During seed germination JIP-23 mRNA was found to accumulate transiently with a maximum at 32 h, whereas the protein was steadily detectable after the onset of expression. The occurrence of new isoforms of JIP-23 during germination in comparison to jasmonate-treated leaves suggests, that the JIP-23 gene family of barley is able to express different subsets of isoforms dependent on the developmental stage.JIP-23 and its transcript were found mainly in the scutellum, the scutellar nodule and in lower parts of the primary leaf of 6 days old seedlings. All these tissues exhibited high levels of endogenous jasmonates. In situ hybridization revealed specific accumulation of JIP-23 mRNA in companion cells of the phloem in the nodule plate of the scutellum. In accordance with that, JIP-23 was detected immunocytochemically in phloem cells of the root as well as of the scutellar nodule and in parenchymatic cells of the scutellum. The cell type-specific occurrence of JIP-23 was restricted to cells, which are known to be highly stressed osmotically by active solute transport. This observation suggests, that the expression of this protein might be a response to osmotic stress during development.
IPB Mainnav Search