Publikationen - Molekulare Signalverarbeitung
Aktive Filter
Suchfilter
- Typ der Publikation
- Publikation (3)
- Erscheinungsjahr
- Journal / Verlag
- Annals of Botany (1)
- BMC Plant Biol. (1)
- Curr Opin Plant Biol. (1)
- Nature Commun. (1)
- Phytochemistry (1)
- ACS Chem Biol (1)
- Acta Biol. Szeged (1)
- Acta Physiol. Plantar. (1)
- Amino Acids (1)
- Anal. Biochem (1)
- Analytical Biochemistry (1)
- Annals of Botany (1)
- Annu Rev Phytopathol (1)
- Annu Rev Plant Biol (1)
- Annu. Rev. Plant Biol. (1)
- Annual Rev Microbiol (1)
- AoB PLANTS (1)
- BMC Evolutionary Biology (1)
- BMC Genomics (1)
- BMC Plant Biol (2)
- BMC Plant Biol. (1)
- Bio Essays (1)
- Bio Protoc (1)
- Biocell (1)
- Biochem J (1)
- Biochem. Soc. Trans. (2)
- Biochemistry (1)
- Biochim. Biophys. Acta (1)
- Biol. Chem (1)
- Biol. Chem (1)
- Biol. Chem. (2)
- Biologie in unserer Zeit (2)
- Biospektrum (1)
- Biotechnol Adv (1)
- Biotechnol Lett (1)
- Bot. Acta (1)
- Braz J Plant Physiol (1)
- Bull Environ Contam Toxicol (1)
- Cell (1)
- Cell Rep (1)
- Chembiochem. (1)
- Chromatographia (2)
- Cold Spring Harb Perspect Biol (2)
- Curr Biol (3)
- Curr Opin Biotech (1)
- Curr Opin Plant Biol (2)
- Curr Opin Plant Biol. (1)
- Curr. Opin. Plant Biol. (1)
- Devel Cell (1)
- Development (1)
- Drugs Exptl Clin Res (1)
- EMBO J (1)
- Ecotoxicol Environ Saf (1)
- Electronic Journal of Biotechnology (1)
- Environ Exp Bot (1)
- Environ Sci Pollut Res (1)
- Equine Vet Educ (1)
- Equine Vet J (1)
- Eur. J. Biochem. (1)
- Eur. J. Plant Pathol. (1)
- FEBS Lett. (1)
- FEBS Letters (8)
- Fett/Lipid (1)
- Field Crops Res (1)
- Front Plant Sci (4)
- Gene (2)
- Genetika (2)
- Genome (1)
- Int J Mol Sci (2)
- J Amer Soc Hort Sci (1)
- J Biol Chem (2)
- J Chromatogr A (1)
- J Exp Bot (8)
- J Gen Plant Pathol (1)
- J Gen Virol (2)
- J Integr Plant Biol (1)
- J Plant Growth Regul (1)
- J Plant Physiol (1)
- J. Exp. Bot. (1)
- J. Agric. Food Chem. (1)
- J. Biol. Chem. (5)
- J. Plant Growth Reg. (2)
- J. Plant Physiol (1)
- J. Plant Physiol. (2)
- Journal of Biological Chemistry (1)
- Journal of Plant Growth Regulation (1)
- Meth Enzymol (1)
- Mol Biol Evol (2)
- Mol Plant (1)
- Mol. Plant Microbiol. Interactions (1)
- Molecular Plant Pathology (1)
- Nat Chem Biol (3)
- Nat Commun (2)
- Nat Plants (2)
- Nat Plants (1)
- Nature (2)
- New Biotechnol (1)
- New Biotechnology (1)
- New Phytol (7)
- New Phytologist (1)
- Autor Nach Häufigkeit alphabetisch sortiert
- Abel, S. (1)
- Bochnia, M. (1)
- Glatter, M. (1)
- Gray, W.M. (1)
- Janzen, N. (1)
- Quint, M. (1)
- Sander, J. (1)
- Scheidemann, W. (1)
- Terhardt, M. (1)
- Vollstedt, S. (1)
- Zeyner, A. (1)
- Ziegler, J. (1)
Zeige Ergebnisse 1 bis 3 von 3.
Abel, S. Phosphate sensing in root development Curr Opin Plant Biol 14, 303-309, (2011) DOI: 10.1016/j.pbi.2011.04.007
Phosphate (Pi) and its anhydrides constitute
major nodes in metabolism. Thus, plant performance depends directly on
Pi nutrition. Inadequate Pi availability in the rhizosphere is a common
challenge to plants, which activate metabolic and developmental
responses to maximize Pi usage and acquisition. The sensory mechanisms
that monitor environmental Pi and transmit the nutritional signal to
adjust root development have increasingly come into focus. Recent
transcriptomic analyses and genetic approaches have highlighted complex
antagonistic interactions between external Pi and Fe bioavailability and
have implicated the stem cell niche as a target of Pi sensing to
regulate root meristem activity.
Bochnia, M.; Scheidemann, W.; Ziegler, J.; Sander, J.; Vollstedt, S.; Glatter, M.; Janzen, N.; Terhardt, M.; Zeyner, A. Predictive value of hypoglycin A and methylencyclopropylacetic acid conjugates in a horse with atypical myopathy in comparison to its cograzing partners Equine Vet Educ 30, 24-28, (2018) DOI: 10.1111/eve.12596
Hypoglycin A (HGA) was detected in blood and urine of a horse suffering from atypical myopathy (AM; Day 2, serum, 8290 μg/l; urine: Day 1, 574, Day 2, 742 μg/l) and in its cograzing partners with a high variability (46–1570 μg/l serum). Over the period of disease, the level of the toxic metabolites (methylencyclopropylacetic acid [MCPA]-conjugates) increased in body fluids of the AM horse (MCPA-carnitine: Day 2, 0.246, Day 3, 0.581 μmol/l serum; MCPA-carnitine: Day 2, 0.621, Day 3, 0.884 μmol/mmol creatinine in urine) and HGA decreased rapidly (Day 3, 2430 μg/l serum). In cograzing horses MCPA-conjugates were not detected. HGA in seeds ranged from 268 to 367 μg/g. Although HGA was present in body fluids of healthy cograzing horses, MCPA-conjugates were not detectable, in contrast to the AM horse. Therefore, increasing concentrations of MCPA-conjugates are supposed to be linked with the onset of AM and both parameters seem to indicate the clinical stage of disease. However, detection of HGA in body fluids of cograzing horses might be a promising step in preventing the disease.
Quint, M.; Gray, W.M. Auxin signaling Curr Opin Plant Biol 9, 448-453, (2006) DOI: 10.1016/j.pbi.2006.07.006
Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins also function as auxin receptors, a potentially complete, and surprisingly simple, signaling pathway from perception to transcriptional response is now before us. However, understanding how this seemingly simple pathway controls the myriad of specific auxin responses remains a daunting challenge, and compelling evidence exists for SCFTIR1/AFB-independent auxin signaling pathways.