zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Wasternack, C.; Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in <span>Annals of Botany</span> Annals of Botany 111, 1021-1058, (2013) DOI: 10.1093/aob/mct067

Background: Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as indevelopment. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to differentmetabolites including the conjugate with isoleucine. Important new components of jasmonate signalling includingits receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stressresponses and development.Scope: The present review is an update of the review on jasmonates published in this journal in 2007. New dataof the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception andsignalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens,in symbiotic interactions, in flower development, in root growth and in light perception.Conclusions: The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN(JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of thejasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature ofnetworks of jasmonate signalling in stress responses and development including hormone cross-talk can beaddressed.
Publikation

Schilling, S.; Stenzel, I.; von Bohlen, A.; Wermann, M.; Schulz, K.; Demuth, H.-U.; Wasternack, C. Isolation and characterization of the glutaminyl cyclases from <i>Solanum tuberosum</i> and <i>Arabidopsis thaliana</i>: implications for physiological functions Biol. Chem 388, 145-153, (2007)

0
Publikation

Feussner, I.; Fritz, I.G.; Hause, B.; Ullrich, W.R.; Wasternack, C. Induction of a new lipoxygenase form in cucumber leaves by salicylic acid or 2,6-dichloroisonicotinic acid Bot. Acta 110, 101-108, (1997) DOI: 10.1111/j.1438-8677.1997.tb00616.x

Changes in lipoxygenase (LOX) protein pattern and/or activity were investigated in relation to acquired resistance of cucumber (Cucumis sativus L.) leaves against two powdery mildews, Sphaerotheca fuliginea (Schlecht) Salmon and Erysiphe cichoracearum DC et Merat. Acquired resistance was established by spraying leaves with salicylic acid (SA) or 2,6-dichloroisonicotinic acid (INA) and estimated in whole plants by infested leaf area compared to control plants. SA was more effective than INA. According to Western blots, untreated cucumber leaves contained a 97 kDa LOX form, which remained unchanged for up to 48 h after pathogen inoculation. Upon treatment with SA alone for 24 h or with INA plus pathogen, an additional 95 kDa LOX form appeared which had an isoelectric point in the alkaline range. For the induction of this form, a threshold concentration of 1 mM SA was required, higher SA concentrations did not change LOX-95 expression which remained similar between 24 h and 96 h but further increased upon mildew inoculation. Phloem exudates contained only the LOX-97 form, in intercellular washing fluid no LOX was detected. dichloroisonicotinic localization revealed LOX protein in the cytosol of the mesophyll cells without differences between the forms.
IPB Mainnav Search