zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Costa, C. T.; Strieder, M. L.; Abel, S.; Delatorre, C. A. Phosphorus and nitrogen interaction: loss of QC identity in response to P or N limitation is antecipated in pdr23 mutant Braz J Plant Physiol 23, 219-229, (2011) DOI: 10.1590/S1677-04202011000300006

Changes in root architecture are an important adaptive strategy used by plants in response to limited nutrient availability to increase the odds of acquiring them. The quiescent center (QC) plays an important role by altering the meristem activity causing differentiation and therefore, inducing a determinate growth program. The arabidopsis mutant pdr23 presents primary short root in the presence of nitrate and is inefficient in the use of nucleic acids as a source of phosphorus. In this study the effect of the pdr23 mutation on the QC maintenance under low phosphorus (P) and/or nitrogen is evaluated. QC identity is maintained in wild-type in the absence of nitrate and/or phosphate if nucleic acids can be used as an alternative source of these nutrients, but not in pdr23. The mutant is not able to use nucleic acids efficiently for substitute Pi, determinate growth is observed, similar to wild-type in the total absence of P. In the absence of N pdr23 loses the expression of QC identity marker earlier than wild-type, indicating that not only the response to P is altered, but also to N. The data suggest that the mutation affects a gene involved either in the crosstalk between these nutrients or in a pathway shared by both nutrients limitation response. Moreover loss of QC identity is also observed in wild-type in the absence of N at longer limitation. Less drastic symptoms are observed in lateral roots of both genotypes.
Publikation

Calderón Villalobos, L.I.; Nill, C.; Marrocco, K.; Kretsch, T.; Schwechheimer, C. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress Gene 392(1-2), 106-116, (2007) DOI: 10.1016/j.gene.2006.11.016

In eukaryotes, E3 ubiquitin ligases (E3s) mediate the ubiquitylation of proteins that are destined for degradation by the ubiquitin-proteasome system. In SKP1/CDC53/F-box protein (SCF)-type E3 complexes, the interchangeable F-box protein confers specificity to the E3 ligase through direct physical interactions with the degradation substrate. The vast majority of the approximately 700 F-box proteins from the plant model organism Arabidopsis thaliana remain to be characterized. Here, we investigate the previously uncharacterized and evolutionarily conserved Arabidopsis F-box protein 7 (AtFBP7), which is encoded by a unique gene in Arabidopsis (At1g21760). Several apparent fbp7 loss-of-function alleles do not have an obvious phenotype. AtFBP7 is ubiquitously expressed and its expression is induced after cold and heat stress. When following up on a reported co-purification of the eukaryotic elongation factor-2 (eEF-2) with YLR097c, the apparent budding yeast orthologue of AtFBP7, we discovered a general defect in protein biosynthesis after cold and heat stress in fbp7 mutants. Thus, our findings suggest that AtFBP7 is required for protein synthesis during temperature stress.
Publikation

Biondi, E.; Branciamore, S.; Fusi, L.; Gago, S.; Gallori, E. Catalytic activity of hammerhead ribozymes in a clay mineral environment: Implications for the RNA world. Gene 389, 10-18, (2007) DOI: 10.1016/j.gene.2006.09.002

0
Publikation

Schilling, S.; Stenzel, I.; von Bohlen, A.; Wermann, M.; Schulz, K.; Demuth, H.-U.; Wasternack, C. Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions Biol. Chem 388, 145-153, (2007) DOI: 10.1515/BC.2007.016

0
Publikation

Kramell, R.; Miersch, O.; Schneider, G.; Wasternack, C. Liquid chromatography of jasmonic acid amine conjugates Chromatographia 49, 42-46, (1999)

0
Publikation

Kramell, R.; Schneider, G.; Miersch, O. Chiral separation of amide conjugates of jasmonic acid by liquid chromatography Chromatographia 45, 104-108, (1997)

0
IPB Mainnav Search