zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 8 von 8.

Publikation

Dahiya, P.; Bürstenbinder, K.; The making of a ring: Assembly and regulation of microtubule-associated proteins during preprophase band formation and division plane set-up Curr. Opin. Plant Biol. 73, 102366, (2023) DOI: 10.1016/j.pbi.2023.102366

The preprophase band (PPB) is a transient cytokinetic structure that marks the future division plane at the onset of mitosis. The PPB forms a dense cortical ring of mainly microtubules, actin filaments, endoplasmic reticulum, and associated proteins that encircles the nucleus of mitotic cells. After PPB disassembly, the positional information is preserved by the cortical division zone (CDZ). The formation of the PPB and its contribution to timely CDZ set-up involves activities of functionally distinct microtubule-associated proteins (MAPs) that interact physically and genetically to support robust division plane orientation in plants. Recent studies identified two types of plant-specific MAPs as key regulators of PPB formation, the TON1 RECRUITMENT MOTIF (TRM) and IQ67 DOMAIN (IQD) families. Both families share hallmarks of disordered scaffold proteins. Interactions of IQDs and TRMs with multiple binding partners, including the microtubule severing KATANIN1, may provide a molecular framework to coordinate PPB formation, maturation, and disassembly.
Publikation

Abel, S.; Phosphate scouting by root tips Curr. Opin. Plant Biol. 39, 168-177, (2017) DOI: 10.1016/j.pbi.2017.04.016

Chemistry assigns phosphate (Pi) dominant roles in metabolism; however, it also renders the macronutrient a genuinely limiting factor of plant productivity. Pi bioavailability is restricted by low Pi mobility in soil and antagonized by metallic toxicities, which force roots to actively seek and selectively acquire the vital element. During the past few years, a first conceptual outline has emerged of the sensory mechanisms at root tips, which monitor external Pi and transmit the edaphic cue to inform root development. This review highlights new aspects of the Pi acquisition strategy of Arabidopsis roots, as well as a framework of local Pi sensing in the context of antagonistic interactions between Pi and its major associated metallic cations, Fe3+ and Al3+.
Publikation

Song, S.; Qi, T.; Wasternack, C.; Xie, D.; Jasmonate signaling and crosstalk with gibberellin and ethylene Curr. Opin. Plant Biol. 21, 112-119, (2014) DOI: 10.1016/j.pbi.2014.07.005

The phytohormone jasmonate (JA) plays essential roles in plant growth, development and defense. In response to the JA signal, the CORONATINE INSENSITIVE 1 (COI1)-based SCF complexes recruit JASMONATE ZIM-domain (JAZ) repressors for ubiquitination and degradation, and subsequently regulate their downstream signaling components essential for various JA responses. Tremendous progress has been made in understanding the JA signaling pathway and its crosstalk with other phytohormone pathways during the past two decades. Recent studies have revealed that a variety of positive and negative regulators act as targets of JAZs to control distinctive JA responses, and that JAZs and these regulators function as crucial interfaces to mediate synergy and antagonism between JA and other phytohormones. Owing to different regulatory players in JA perception and JA signaling, a fine-tuning of JA-dependent processes in plant growth, development and defense is achieved. In this review, we will summarize the latest progresses in JA signaling and its crosstalk with gibberellin and ethylene.
Publikation

Abel, S.; Phosphate sensing in root development Curr. Opin. Plant Biol. 14, 303-309, (2011) DOI: 10.1016/j.pbi.2011.04.007

Phosphate (Pi) and its anhydrides constitute major nodes in metabolism. Thus, plant performance depends directly on Pi nutrition. Inadequate Pi availability in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi usage and acquisition. The sensory mechanisms that monitor environmental Pi and transmit the nutritional signal to adjust root development have increasingly come into focus. Recent transcriptomic analyses and genetic approaches have highlighted complex antagonistic interactions between external Pi and Fe bioavailability and have implicated the stem cell niche as a target of Pi sensing to regulate root meristem activity.
Publikation

Quint, M.; Gray, W. M.; Auxin signaling Curr. Opin. Plant Biol. 9, 448-453, (2006) DOI: 10.1016/j.pbi.2006.07.006

Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins also function as auxin receptors, a potentially complete, and surprisingly simple, signaling pathway from perception to transcriptional response is now before us. However, understanding how this seemingly simple pathway controls the myriad of specific auxin responses remains a daunting challenge, and compelling evidence exists for SCFTIR1/AFB-independent auxin signaling pathways.
Publikation

Schwechheimer, C.; Villalobos, L. I. A. C.; Cullin-containing E3 ubiquitin ligases in plant development Curr. Opin. Plant Biol. 7, 677-686, (2004) DOI: 10.1016/j.pbi.2004.09.009

In eukaryotes, the ubiquitin–proteasome system participates in the control of signal transduction events by selectively eliminating regulatory proteins. E3 ubiquitin ligases specifically bind degradation substrates and mediate their poly-ubiquitylation, a prerequisite for their degradation by the 26S proteasome. On the basis of the analysis of the Arabidopsis genome sequence, it is predicted that there are more than 1000 E3 ubiquitin ligases in plants. Several types of E3 ubiquitin ligases have already been characterized in eukaryotes. Recently, some of these E3 enzymes have been implicated in specific plant signaling pathways.
Publikation

Wasternack, C.; Miersch, O.; Kramell, R.; Hause, B.; Ward, J.; Beale, M.; Boland, W.; Parthier, B.; Feussner, I.; Jasmonic acid: biosynthesis, signal transduction, gene expression Fett/Lipid 100, 139-146, (1998) DOI: 10.1002/(SICI)1521-4133(19985)100:4/5<139::AID-LIPI139>3.0.CO;2-5

Jasmonic acid (JA) is an ubiquitously occurring plant growth regulator which functions as a signal of developmentally or environmentally regulated expression of various genes thereby contributing to the defense status of plants [1–5]. The formation of jasmonates in a lipid‐based signalling pathway via octadecanoids seems to be a common principle for many plant species to express wound‐ and stressinduced genes [4, 5].There are various octadecanoid‐derived signals [3]. Among them, jasmonic acid and its amino acid conjugates are most active in barley, supporting arguments that β‐oxidation is an essential step in lipid‐based JA mediated responses. Furthermore, among derivatives of 12‐oxophytodienoic acid (PDA) carrying varying length of the carboxylic acid side‐chain, only those with a straight number of carbon atoms are able to induce JA responsive genes in barley leaves after treatment with these compounds. Barley leaves stressed by treatment with sorbitol solutions exhibit mainly an endogenous rise of JA and JA amino acid conjugates suggesting that both of them are stress signals. Data on organ‐ and tissue‐specific JA‐responsive gene expression will be presented and discussed in terms of “JA as a master switch” among various lipid‐derived signals.
Publikation

Feussner, I.; Wasternack, C.; Lipoxygenase catalyzed oxygenation of lipids Fett/Lipid 100, 146-152, (1998) DOI: 10.1002/(SICI)1521-4133(19985)100:4/5<146::AID-LIPI146>3.0.CO;2-D

Lipoxygenases (LOXs) and other LOX pathway enzymes are potentially able to form a large set of compounds being of commercial interest. Among them are conjugated dienic acids, jasmonates, and volatile aldehydes. Additionally, fatty acid hydroperoxides, formed by LOX, can serve as precursors for further transformation by either enzymes of the so‐called LOX pathway or by chemical reactions. In the case of linoleic acid more than one hundred products generated from its LOX‐derived fatty acid hydroperoxides have been described. Many of these products exhibit biological activity, suggesting a significant biological function of LOXs. This will be described for two different 13‐LOXs. (I) In various oilseeds we found that specific 13‐LOXs are localized at the lipid body membrane. They are capable of oxygenating esterified polyenoic fatty acids, such as triacylglycerols and phospho‐lipids. In addition, they form with arachidonic acid as substrate preferentially either 8‐ or 11‐hydroperoxy eicosatetraenoic acid, which is a very unusual positional specificity for plant LOXs. (II) From barley leaves we isolated another linoleate 13‐LOX form, which is localized within chloroplasts and is induced by jasmonic acid methyl ester. It is suggested, that this LOX form is capable of oxygenating linolenic acid residues of galactolipids. Examples will be presented for barley leaves of oxygenated derivatives of linolenic acid and compounds resulting from the hydroperoxide lyase‐branch of the LOX pathway.
IPB Mainnav Search