zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

De Nardi, B.; Dreos, R.; Del Terra, L.; Martellossi, C.; Asquini, E.; Tornincasa, P.; Gasperini, D.; Pacchioni, B.; Rathinavelu, R.; Pallavicini, A.; Graziosi, G.; Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance Genome 49, 1594-1605, (2006) DOI: 10.1139/g06-125

Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
Publikation

Vörös, K.; Feussner, I.; Kühn, H.; Lee, J.; Graner, A.; Löbler, M.; Parthier, B.; Wasternack, C.; Characterization of a methyljasmonate-inducible lipoxygenase from barley (Hordeum vulgare cv. Salome) leaves Eur. J. Biochem. 251, 36-44, (1998) DOI: 10.1046/j.1432-1327.1998.2510036.x

We found three methyl jasmonate−induced lipoxygenases with molecular masses of 92 kDa, 98 kDa, and 100 kDa (LOX‐92, ‐98 and ‐100) [Feussner, I., Hause, B., Vörös, K., Parthier, B. & Wasternack, C. (1995) Plant J. 7 , 949−957]. At least two of them (LOX‐92 and LOX‐100), were shown to be localized within chloroplasts of barley leaves. Here, we describe the isolation of a cDNA (3073 bp) coding for LOX‐100, a protein of 936 amino acid residues and a molecular mass of 106 kDa. By sequence comparison this lipoxygenase could be identified as LOX2‐type lipoxygenase and was therefore designated LOX2 : Hv : 1 . The recombinant lipoxygenase was expressed in Escherichia coli and characterized as linoleate 13‐LOX and arachidonate 15‐LOX, respectively. The enzyme exhibited a pH optimum around pH 7.0 and a moderate substrate preference for linoleic acid. The gene was transiently expressed after exogenous application of jasmonic acid methyl ester with a maximum between 12 h and 18 h. Its expression was not affected by exogenous application of abscisic acid. Also a rise of endogenous jasmonic acid resulting from sorbitol stress did not induce LOX2 : Hv : 1 , suggesting a separate signalling pathway compared with other jasmonate‐induced proteins of barley. The properties of LOX2 : Hv : 1 are discussed in relation to its possible involvement in jasmonic acid biosynthesis and other LOX forms of barley identified so far.
IPB Mainnav Search