zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Ronzan, M.; Piacentini, D.; Fattorini, L.; Federica, D. R.; Caboni, E.; Eiche, E.; Ziegler, J.; Hause, B.; Riemann, M.; Betti, C.; Altamura, M. M.; Falasca, G. Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure Environ Exp Bot 165, 59-69, (2019) DOI: 10.1016/j.envexpbot.2019.05.013

Soil pollutants may affect root growth through interactions among phytohormones like auxin and jasmonates. Rice is frequently grown in paddy fields contaminated by cadmium and arsenic, but the effects of these pollutants on jasmonates/auxin crosstalk during adventitious and lateral roots formation are widely unknown. Therefore, seedlings of Oryza sativa cv. Nihonmasari and of the jasmonate-biosynthetic mutant coleoptile photomorphogenesis2 were exposed to cadmium and/or arsenic, and/or jasmonic acid methyl ester, and then analysed through morphological, histochemical, biochemical and molecular approaches.In both genotypes, arsenic and cadmium accumulated in roots more than shoots. In the roots, arsenic levels were more than twice higher than cadmium levels, either when arsenic was applied alone, or combined with cadmium. Pollutants reduced lateral root density in the wild -type in every treatment condition, but jasmonic acid methyl ester increased it when combined with each pollutant. Interestingly, exposure to cadmium and/or arsenic did not change lateral root density in the mutant. The transcript levels of OsASA2 and OsYUCCA2, auxin biosynthetic genes, increased in the wild-type and mutant roots when pollutants and jasmonic acid methyl ester were applied alone. Auxin (indole-3-acetic acid) levels transiently increased in the roots with cadmium and/or arsenic in the wild-type more than in the mutant. Arsenic and cadmium, when applied alone, induced fluctuations in bioactive jasmonate contents in wild-type roots, but not in the mutant. Auxin distribution was evaluated in roots of OsDR5::GUS seedlings exposed or not to jasmonic acid methyl ester added or not with cadmium and/or arsenic. The DR5::GUS signal in lateral roots was reduced by arsenic, cadmium, and jasmonic acid methyl ester. Lipid peroxidation, evaluated as malondialdehyde levels, was higher in the mutant than in the wild-type, and increased particularly in As presence, in both genotypes.Altogether, the results show that an auxin/jasmonate interaction affects rice root system development in the presence of cadmium and/or arsenic, even if exogenous jasmonic acid methyl ester only slightly mitigates pollutants toxicity.
Publikation

Bagchi, R.; Melnyk, C. W.; Christ, G.; Winkler, M.; Kirchsteiner, K.; Salehin, M.; Mergner, J.; Niemeyer, M.; Schwechheimer, C.; Calderón Villalobos, L. I. A.; Estelle, M. The Arabidopsis ALF4 protein is a regulator of SCF E3 ligases. EMBO J 37, 255-268, (2018) DOI: 10.15252/embj.201797159

The cullin-RING E3 ligases (CRLs) regulate diverse cellular processes in all eukaryotes. CRL activity is controlled by several proteins or protein complexes, including NEDD8, CAND1, and the CSN. Recently, a mammalian protein called Glomulin (GLMN) was shown to inhibit CRLs by binding to the RING BOX (RBX1) subunit and preventing binding to the ubiquitin-conjugating enzyme. Here, we show that Arabidopsis ABERRANT LATERAL ROOT FORMATION4 (ALF4) is an ortholog of GLMN. The alf4 mutant exhibits a phenotype that suggests defects in plant hormone response. We show that ALF4 binds to RBX1 and inhibits the activity of SCFTIR1, an E3 ligase responsible for degradation of the Aux/IAA transcriptional repressors. In vivo, the alf4 mutation destabilizes the CUL1 subunit of the SCF. Reduced CUL1 levels are associated with increased levels of the Aux/IAA proteins as well as the DELLA repressors, substrate of SCFSLY1. We propose that the alf4 phenotype is partly due to increased levels of the Aux/IAA and DELLA proteins.
Publikation

Schilling, S.; Stenzel, I.; von Bohlen, A.; Wermann, M.; Schulz, K.; Demuth, H.-U.; Wasternack, C. Isolation and characterization of the glutaminyl cyclases from <i>Solanum tuberosum</i> and <i>Arabidopsis thaliana</i>: implications for physiological functions Biol. Chem 388, 145-153, (2007)

0
IPB Mainnav Search