zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Bücher und Buchkapitel

Yamaguchi, I.; Cohen, J.D.; Culler, A.H.; Quint, M.; Slovin, J.P.; Nakajima, M.; Sakakibara, H.; Kuroha, T.; Hirai, N.; Yokota, T.; Ohta, H.; Kabayashi, Y.; Mori, H.; Sakagami, Y. Plant Hormones (Lew Mander and Hung-Wen (Ben) Liu). Comprehensive Natural Products II, Elsevier, Oxford 9-125, (2010)

The definition of a plant hormone has not been clearly established, so the compounds classified as plant hormones often vary depending on which definition is considered. In this chapter, auxins, gibberellins (GAs), cytokinins, abscisic acid, brassinosteroids, jasmonic acid-related compounds, and ethylene are described as established plant hormones, while polyamines and phenolic compounds are not included. On the other hand, several peptides that have been proven to play a clear physiological role(s) in plant growth and development, similar to the established plant hormones, are referred. This chapter will focus primarily on the more recent discoveries of plant hormones and their impact on our current understanding of their biological role. In some cases, however, it is critical to place recent work in a proper historical context.
Publikation

Schilling, S.; Stenzel, I.; von Bohlen, A.; Wermann, M.; Schulz, K.; Demuth, H.-U.; Wasternack, C. Isolation and characterization of the glutaminyl cyclases from <i>Solanum tuberosum</i> and <i>Arabidopsis thaliana</i>: implications for physiological functions Biol. Chem 388, 145-153, (2007)

0
Publikation

Quint, M.; Gray, W.M. Auxin signaling Curr Opin Plant Biol 9, 448-453, (2006)

Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins also function as auxin receptors, a potentially complete, and surprisingly simple, signaling pathway from perception to transcriptional response is now before us. However, understanding how this seemingly simple pathway controls the myriad of specific auxin responses remains a daunting challenge, and compelling evidence exists for SCFTIR1/AFB-independent auxin signaling pathways.
Publikation

Abel, S.; Ballas, N.; Wong, L-M.; Theologis, A. DNA elements responsive to auxin Bio Essays 18(8), 647-654, (1996)

Genes induced by the plant hormone auxin are probably involved in the execution of vital cellular functions and developmental processes. Experimental approaches designed to elucidate the molecular mechanisms of auxin action have focused on auxin perception, genetic dissection of the signaling apparatus and specific gene activation. Auxin-responsive promoter elements of early genes provide molecular tools for probing auxin signaling in reverse. Functional analysis of several auxin-specific promoters of unrelated early genes suggests combinatorial utilization of both conserved and variable elements. These elements are arranged into autonomous domains and the combination of such modules generates uniquely composed promoters. Modular promoters allow for auxin-mediated transcriptional responses to be revealed in a tissue- and development-specific manner.
IPB Mainnav Search