Publikation
Krägeloh, T.; Cavalleri, J. M. V.; Ziegler, J.; Sander, J.; Terhardt, M.; Breves, G.; Cehak, A. Identification of hypoglycin A binding adsorbents
as potential preventive measures in co-grazers of atypical myopathy
affected horses Equine Vet J 50, 220-227, (2018) DOI: 10.1111/evj.12723
BackgroundIntestinal absorption of hypoglycin A
(HGA) and its metabolism are considered major prerequisites for atypical
myopathy (AM). The increasing incidence and the high mortality rate of
AM urgently necessitate new therapeutic and/or preventative
approaches.ObjectivesTo identify a substance for oral administration
capable of binding HGA in the intestinal lumen and effectively reducing
the intestinal absorption of the toxin.Study designExperimental in vitro
study.MethodsSubstances commonly used in equine practice (activated
charcoal composition, di‐tri‐octahedral smectite, mineral oil and
activated charcoal) were tested for their binding capacity for HGA using
an in vitro incubation method. The substance most effective in binding
HGA was subsequently tested for its potential to reduce intestinal HGA
absorption. Jejunal tissues of 6 horses were incubated in Ussing
chambers to determine mucosal uptake, tissue accumulation, and serosal
release of HGA in the presence and absence of the target substance.
Potential intestinal metabolism in methylenecyclopropyl acetic acid
(MCPA)‐conjugates was investigated by analysing their concentrations in
samples from the Ussing chambers.ResultsActivated charcoal composition
and activated charcoal were identified as potent HGA binding substances
with dose and pH dependent binding capacity. There was no evidence of
intestinal HGA metabolism.Main limitationsBinding capacity of adsorbents
was tested in vitro using aqueous solutions, and in vivo factors such
as transit time and composition of intestinal content, may affect
adsorption capacity after oral administration.ConclusionsFor the first
time, this study identifies substances capable of reducing HGA
intestinal absorption. This might have major implications as a
preventive measure in cograzers of AM affected horses but also in horses
at an early stage of intoxication.
Publikation
Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5
BackgroundGlobal increase in ambient temperatures
constitute a significant challenge to wild and cultivated plant species.
Forward genetic analyses of individual temperature-responsive traits
have resulted in the identification of several signaling and response
components. However, a comprehensive knowledge about temperature
sensitivity of different developmental stages and the contribution of
natural variation is still scarce and fragmented at best.ResultsHere, we
systematically analyze thermomorphogenesis throughout a complete life
cycle in ten natural Arabidopsis thaliana accessions grown under long
day conditions in four different temperatures ranging from 16 to 28 °C.
We used Q10, GxE, phenotypic divergence and correlation analyses to
assess temperature sensitivity and genotype effects of more than 30
morphometric and developmental traits representing five phenotype
classes. We found that genotype and temperature differentially affected
plant growth and development with variing strengths. Furthermore,
overall correlations among phenotypic temperature responses was
relatively low which seems to be caused by differential capacities for
temperature adaptations of individual
accessions.ConclusionGenotype-specific temperature responses may be
attractive targets for future forward genetic approaches and
accession-specific thermomorphogenesis maps may aid the assessment of
functional relevance of known and novel regulatory components.
Publikation
Hoehenwarter, W.; Mönchgesang, S.; Neumann, S.; Majovsky, P.; Abel, S.; Müller, J. Comparative expression profiling reveals a role of the root apoplast in local phosphate response BMC Plant Biol 16 , 106, (2016) DOI: 10.1186/s12870-016-0790-8
BackgroundPlant adaptation to limited phosphate availability
comprises a wide range of responses to conserve and remobilize internal
phosphate sources and to enhance phosphate acquisition. Vigorous
restructuring of root system architecture provides a developmental
strategy for topsoil exploration and phosphate scavenging. Changes in
external phosphate availability are locally sensed at root tips and
adjust root growth by modulating cell expansion and cell division. The
functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and
2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key
components of root phosphate sensing. We recently demonstrated that the
LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2)
module mediates apoplastic deposition of ferric iron (Fe3+) in the
growing root tip during phosphate limitation. Iron deposition coincides
with sites of reactive oxygen species generation and triggers cell wall
thickening and callose accumulation, which interfere with cell-to-cell
communication and inhibit root growth.ResultsWe took advantage of
the opposite phosphate-conditional root phenotype of the phosphate
deficiency response 2 mutant (hypersensitive) and low phosphate response
1 and 2 double mutant (insensitive) to investigate the phosphate
dependent regulation of gene and protein expression in roots using
genome-wide transcriptome and proteome analysis. We observed an
overrepresentation of genes and proteins that are involved in the
regulation of iron homeostasis, cell wall remodeling and reactive oxygen
species formation, and we highlight a number of candidate genes with a
potential function in root adaptation to limited phosphate availability.
Our experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated,
apoplastic iron redistribution, but not intracellular iron uptake and
iron storage, triggers phosphate-dependent root growth modulation. We
further highlight expressional changes of several cell wall-modifying
enzymes and provide evidence for adjustment of the pectin network at
sites of iron accumulation in the root.ConclusionOur study
reveals new aspects of the elaborate interplay between phosphate
starvation responses and changes in iron homeostasis. The results
emphasize the importance of apoplastic iron redistribution to mediate
phosphate-dependent root growth adjustment and suggest an important role
for citrate in phosphate-dependent apoplastic iron transport. We
further demonstrate that root growth modulation correlates with an
altered expression of cell wall modifying enzymes and changes in the
pectin network of the phosphate-deprived root tip, supporting the
hypothesis that pectins are involved in iron binding and/or phosphate
mobilization.
Publikation
Ryan,P. T.; Ó’Maoiléidigh, D. S.; Drost, H.-G.; Kwaśniewska, D.; Gabel, A.; Grosse, I.; Graciet, E.; Quint, M.; Wellmer, F. Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation BMC Genomics 16, 488 , (2015) DOI: 10.1186/s12864-015-1699-6
Background:The formation of flowers is one of the main model systems to elucidate the molecular mechanisms that control developmental processes in plants. Although several studies have explored gene expression during flower development in the model plant Arabidopsis thalianaon a genome-wide scale, a continuous series of expression data from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to closethis information gap and to generate a reference dataset for stage-specific gene expression during flower formation.Results:Using a floral induction system, we collected floral buds at 14 different stages from the time of initiation until maturation. Using whole-genome microarray analysis, we identified 7,405 genes that exhibit rapid expression changes during flower development. These genes comprise many known floral regulators and we found that the expression profiles for these regulators match their known expression patterns, thus validating the dataset. We analyzed groups ofco-expressed genes for over-represented cellular and developmental functions through Gene Ontology analysis and found that they could be assigned specific patterns of activities, which are in agreement with the progression of flower development. Furthermore, by mapping binding sites of floral organ identity factors onto our dataset, we were able to identify gene groups that are likely predominantly under control of these transcriptional regulators. We furtherfound that the distribution of paralogs among groups of co-expressed genes varies considerably, with genes expressed predominantly at early and intermediate stages of flower development showing the highest proportion of such genes.Conclusions:Our results highlight and describe the dynamic expression changes undergone by a large numberof genes during flower development. They further provide a comprehensive reference dataset for temporal gene expression during flower formation and we demonstrate that it can be used to integrate data from other genomics approaches such as genome-wide localization studies of transcription factor binding sites.
Publikation
Schilling, S.; Stenzel, I.; von Bohlen, A.; Wermann, M.; Schulz, K.; Demuth, H.-U.; Wasternack, C. Isolation and characterization of the glutaminyl
cyclases from Solanum tuberosum and Arabidopsis thaliana: implications
for physiological functions Biol. Chem 388, 145-153, (2007) DOI: 10.1515/BC.2007.016
0