zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Reginato, M.; Abdala, G.; Miersch, O.; Ruiz, O.; Moschetti, E.; Luna, V.; Changes in the levels of jasmonates and free polyamines induced by Na2SO4 and NaCl in roots and leaves of the halophyte Prosopis strombulifera Biologia 67, 689-697, (2012) DOI: 10.2478/s11756-012-0052-7

Prosopis strombulifera, a common legume in high-salinity soils of Argentina, is a useful model for elucidation of salt tolerance mechanisms and specific biochemical pathways in halophytes, since its NaCl tolerance exceeds the limit described for most halophytic plants. We analyzed the effects of the increasing concentration of two main soil salts, Na2SO4 and NaCl, on growth parameters of P. strombulifera, chlorophyll levels, and content of jasmonates (JAs) and polyamines (PAs), which are key molecules involved in stress responses. P. strombulifera showed a halophytic response (growth promotion) to NaCl, but strong growth inhibition by iso-osmotic solutions of Na2SO4. Chlorophyll levels, number of leaves and leaf area were also differentially affected. An important finding was the partial alleviation of SO42− toxicity by treatment with two-salt mixture. JAs are not directly involved in salt tolerance in this species since its levels decrease under all salt treatments. Beneficial effects of Putrescine (Put) accumulation in NaCl treated plants maybe inferred probably associated with the antioxidative defense system. Another novel finding is the accumulation of the uncommon PA cadaverine in roots under high Na2SO4, which may be related to SO42− toxicity.
Publikation

De Nardi, B.; Dreos, R.; Del Terra, L.; Martellossi, C.; Asquini, E.; Tornincasa, P.; Gasperini, D.; Pacchioni, B.; Rathinavelu, R.; Pallavicini, A.; Graziosi, G.; Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance Genome 49, 1594-1605, (2006) DOI: 10.1139/g06-125

Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
IPB Mainnav Search