zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Nishiyama, T.; Sakayama, H.; de Vries, J.; Buschmann, H.; Saint-Marcoux, D.; Ullrich, K. K.; Haas, F. B.; Vanderstraeten, L.; Becker, D.; Lang, D.; Vosolsobě, S.; Rombauts, S.; Wilhelmsson, P. K.; Janitza, P.; Kern, R.; Heyl, A.; Rümpler, F.; Calderón Villalobos, L. I. A.; Clay, J. M.; Skokan, R.; Toyoda, A.; Suzuki, Y.; Kagoshima, H.; Schijlen, E.; Tajeshwar, N.; Catarino, B.; Hetherington, A. J.; Saltykova, A.; Bonnot, C.; Breuninger, H.; Symeonidi, A.; Radhakrishnan, G. V.; Van Nieuwerburgh, F.; Deforce, D.; Chang, C.; Karol, K. G.; Hedrich, R.; Ulvskov, P.; Glöckner, G.; Delwiche, C. F.; Petrášek, J.; Van de Peer, Y.; Friml, J.; Beilby, M.; Dolan, L.; Kohara, Y.; Sugano, S.; Fujiyama, A.; Delaux, P.-M.; Quint, M.; Theißen, G.; Hagemann, M.; Harholt, J.; Dunand, C.; Zachgo, S.; Langdale, J.; Maumus, F.; Van Der Straeten, D.; Gould, S. B.; Rensing, S. A.; The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization Cell 174, 448-464.e24, (2018) DOI: 10.1016/j.cell.2018.06.033

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.
Publikation

Calderón Villalobos, L. I. A.; Lee, S.; De Oliveira, C.; Ivetac, A.; Brandt, W.; Armitage, L.; Sheard, L. B.; Tan, X.; Parry, G.; Mao, H.; Zheng, N.; Napier, R.; Kepinski, S.; Estelle, M.; A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin Nat. Chem. Biol. 8, 477-485, (2012) DOI: 10.1038/nchembio.926

The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response.
Publikation

Santner, A.; Calderon-Villalobos, L. I. A.; Estelle, M.; Plant hormones are versatile chemical regulators of plant growth Nat. Chem. Biol. 5, 301-307, (2009) DOI: 10.1038/nchembio.165

The plant hormones are a structurally unrelated collection of small molecules derived from various essential metabolic pathways. These compounds are important regulators of plant growth and mediate responses to both biotic and abiotic stresses. During the last ten years there have been many exciting advances in our understanding of plant hormone biology, including new discoveries in the areas of hormone biosynthesis, transport, perception and response. Receptors for many of the major hormones have now been identified, providing new opportunities to study the chemical specificity of hormone signaling. These studies also reveal a surprisingly important role for the ubiquitin-proteasome pathway in hormone signaling. In addition, recent work confirms that hormone signaling interacts at multiple levels during plant growth and development. In the future, a major challenge will be to understand how the information conveyed by these simple compounds is integrated during plant growth.
Publikation

Fonseca, S.; Chini, A.; Hamberg, M.; Adie, B.; Porzel, A.; Kramell, R.; Miersch, O.; Wasternack, C.; Solano, R.; (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate Nat. Chem. Biol. 5, 344-350, (2009) DOI: 10.1038/nchembio.161

Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCFCOI1-mediated proteasome degradation of JAZ repressors. (−)-JA-L-Ile is the proposed bioactive hormone, and SCFCOI1 is its likely receptor. We found that the biological activity of (−)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic isomer (+)-JA-L-Ile, which suggests that the stereochemical orientation of the cyclopentanone-ring side chains greatly affects receptor binding. Detailed GC-MS and HPLC analyses showed that the (−)-JA-L-Ile preparations currently used in ligand binding studies contain small amounts of the C7 epimer (+)-7-iso-JA-L-Ile. Purification of each of these molecules demonstrated that pure (−)-JA-L-Ile is inactive and that the active hormone is (+)-7-iso-JA-L-Ile, which is also structurally more similar to coronatine. In addition, we show that pH changes promote conversion of (+)-7-iso-JA-L-Ile to the inactive (−)-JA-L-Ile form, thus providing a simple mechanism that can regulate hormone activity through epimerization.
IPB Mainnav Search