zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.


Stephani, M.; Picchianti, L.; Gajic, A.; Beveridge, R.; Skarwan, E.; Sanchez de Medina Hernandez, V.; Mohseni, A.; Clavel, M.; Zeng, Y.; Naumann, C.; Matuszkiewicz, M.; Turco, E.; Loefke, C.; Li, B.; Durnberger, G.; Schutzbier, M.; Chen, H. T.; Abdrakhmanov, A.; Savova, A.; Chia, K.-S.; Djamei, A.; Schaffner, I.; Abel, S.; Jiang, L.; Mechtler, K.; Ikeda, F.; Martens, S.; Clausen, T.; Dagdas, Y.; A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress eLife 9, e58396, (2020) DOI: 10.7554/elife.58396

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.

Liu, S.; Kracher, B.; Ziegler, J.; Birkenbihl, R. P.; Somssich, I. E.; Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100 eLife 4, e07295, (2015) DOI: 10.7554/eLife.07295

The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.

Ried, M. K.; Antolín-Llovera, M.; Parniske, M.; Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases eLife 3, e03891, (2014) DOI: 10.7554/eLife.03891

Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.

Vigliocco, A.; Bonamico, B.; Alemano, S.; Miersch, O.; Abdala, G.; Stimulation of jasmonic acid production in Zea Mays L. infected by the maize rough dwarf virus - Río Cuarto. Reversion of symptoms by salicylic acid Biocell 26, 369-374, (2002)

In the present paper we study the possible biological relevance of endogenous jasmonic acid (JA) and exogenous salicylic acid (SA) in a plant-microbial system maize-virus. The virus disease "Mal de Río Cuarto" is caused by the maize rough dwarf virus - Río Cuarto. The characteristic symptoms are the appearance of galls or "enations" in leaves, shortening of the stem internodes, poor radical system and general stunting. Changes in JA and protein pattern in maize control and infected plants of a virus-tolerant cultivar were investigated. Healthy and infected-leaf discs were collected for JA measurement at different post-infection times (20, 40, 60 and 68 days). JA was also measured in roots on day 60 after infection. For SDS-PAGE protein analysis, leaf discs were also harvested on day 60 after infection. Infected leaves showed higher levels of JA than healthy leaves, and the rise in endogenous JA coincided with the enation formation. The soluble protein amount did not show differences between infected and healthy leaves; moreover, no difference in the expression of soluble protein was revealed by SDS-PAGE. Our results show that the octadecanoid pathway was stimulated in leaves and roots of the tolerant maize cultivar when infected by this virus. This finding, together with fewer plants with the disease symptoms, suggest that higher foliar and roots JA content may be related to disease tolerance. SA exogenous treatment caused the reversion of the dwarfism symptom.
IPB Mainnav Search