zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Wasternack, C.; Feussner, I.; The Oxylipin Pathways: Biochemistry and Function Annu. Rev. Plant Biol. 69, 363-386, (2018) DOI: 10.1146/annurev-arplant-042817-040440

Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Publikation

Feussner, I.; Wasternack, C.; The lipoxygenase pathway Annu. Rev. Plant Biol. 53, 275-297, (2002) DOI: 10.1146/annurev.arplant.53.100301.135248

Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.
Publikation

Schilling, S.; Hoffmann, T.; Rosche, F.; Manhart, S.; Wasternack, C.; Demuth, H.-U.; Heterologous Expression and Characterization of Human Glutaminyl Cyclase: Evidence for a Disulfide Bond with Importance for Catalytic Activity Biochemistry 41, 10849-10857, (2002) DOI: 10.1021/bi0260381

Glutaminyl cyclase (QC, EC 2.3.2.5) catalyzes the formation of pyroglutamate residues from glutamine at the N-terminus of peptides and proteins. In the current study, human QC was functionally expressed in the secretory pathway of Pichia pastoris, yielding milligram quantities after purification from the supernatant of a 5 L fermentation. Initial characterization studies of the recombinant QC using MALDI-TOF mass spectrometry revealed correct proteolytic processing and N-glycosylation at both potential sites with similar 2 kDa extensions. CD spectral analysis indicated a high α-helical content, which contrasts with plant QC from Carica papaya. The kinetic parameters for conversion of H-Gln-Tyr-Ala-OH by recombinant human QC were almost identical to those previously reported for purified bovine pituitary QC. However, the results obtained for conversion of H-Gln-Gln-OH, H-Gln-NH2, and H-Gln-AMC were found to be contradictory to previous studies on human QC expressed intracellularly in E. coli. Expression of QC in E. coli showed that approximately 50% of the protein did not contain a disulfide bond that is present in the entire QC expressed in P. pastoris. Further, the enzyme was consistently inactivated by treatment with 15 mM DTT, whereas deglycosylation had no effect on enzymatic activity. Analysis of the fluorescence spectra of the native, reduced, and unfolded human QC point to a conformational change of the protein upon treatment with DTT. In terms of the different enzymatic properties, the consequences of QC expression in different environments are discussed.
Publikation

Hause, B.; Feussner, K.; Wasternack, C.; Nuclear Location of a Diadenosine 5′,5′”-P1,P4Tetraphosphate (Ap4A) Hydrolase in Tomato Cells Grown in Suspension Cultures Bot. Acta 110, 452-457, (1997) DOI: 10.1111/j.1438-8677.1997.tb00662.x

Diadenosine 5′,5′”‐P1,P4‐tetraphosphate (Ap4A) cleaving enzymes are assumed to regulate intracellular levels of Ap4A, a compound known to affect cell proliferation and stress responses. From plants an Ap4A hydrolase was recently purified using tomato cells grown in suspension. It was partially sequenced and a peptide antibody was prepared (Feussner et al., 1996). Using this polyclonal monospecific antibody, an abundant nuclear location of Ap4A hydrolase in 4‐day‐old cells of atomato cell suspension culture is demonstrated here by means of immunocytochemical techniques using FITC (fluorescein‐5‐isothiocyanate) labeled secondary antibodies. The microscopic analysis of the occurrence of Ap4A hydrolase performed for different stages of the cell cycle visualized by parallel DAPI (4,6‐diamidino‐2‐phenylindole) staining revealed that the protein accumulates within nuclei of cells in the interphase, but is absent in the nucleus as well as cytoplasm during all stages of mitosis. This first intracellular localization of an Ap4A degrading enzyme within the nucleus and its pattern of appearance during the cell cycle is discussed in relation to the suggested role of Ap4A in triggering DNA synthesis and cell proliferation.
Publikation

Feussner, I.; Fritz, I. G.; Hause, B.; Ullrich, W. R.; Wasternack, C.; Induction of a new Lipoxygenase Form in Cucumber Leaves by Salicylic Acid or 2,6-Dichloroisonicotinic Acid Bot. Acta 110, 101-108, (1997) DOI: 10.1111/j.1438-8677.1997.tb00616.x

Changes in lipoxygenase (LOX) protein pattern and/or activity were investigated in relation to acquired resistance of cucumber (Cucumis sativus L.) leaves against two powdery mildews, Sphaerotheca fuliginea (Schlecht) Salmon and Erysiphe cichoracearum DC et Merat. Acquired resistance was established by spraying leaves with salicylic acid (SA) or 2,6‐dichloroisonicotinic acid (INA) and estimated in whole plants by infested leaf area compared to control plants. SA was more effective than INA. According to Western blots, untreated cucumber leaves contained a 97 kDa LOX form, which remained unchanged for up to 48 h after pathogen inoculation. Upon treatment with SA alone for 24 h or with INA plus pathogen, an additional 95 kDa LOX form appeared which had an isoelectric point in the alkaline range. For the induction of this form, a threshold concentration of 1 mM SA was required, higher SA concentrations did not change LOX‐95 expression which remained similar between 24 h and 96 h but further increased upon mildew inoculation. Phloem exudates contained only the LOX‐97 form, in intercellular washing fluid no LOX was detected. dichloroisonicotinic localization revealed LOX protein in the cytosol of the mesophyll cells without differences between the forms.
Publikation

Hause, B.; zur Nieden, U.; Lehmann, J.; Wasternack, C.; Parthier, B.; Intracellular Localization of Jasmonate-Induced Proteins in Barley Leaves Bot. Acta 107, 333-341, (1994) DOI: 10.1111/j.1438-8677.1994.tb00804.x

The plant growth substance jasmonic acid and its methyl ester (JA‐Me) induce a set of proteins (jasmonate‐induced proteins, JIPs) when applied to leaf segments of barley (Hordeum vulgare L. cv. Salome). Most of these JIPs could be localized within different cell compartments by using a combination of biochemical and histochemical methods. Isolation and purification of various cell organelles of barley mesophyll cells, the separation of their proteins by one‐dimensional polyacrylamide gel electrophoresis and the identification of the major abundant JIPs by Western blot analysis, as well as the immuno‐gold labelling of JIPs in ultrathin sections were performed to localize JIPs intracellularly. JIP‐23 was found to be in vacuoles, peroxisomes, and in the granular parts of the nucleus as well as within the cytoplasm; JIP‐37 was detected in vacuoles and in the nucleoplasm; JIP‐66 is a cytosolic protein. Some less abundant JIPs were also localized within different cell compartments: JIP‐100 was found within the stromal fraction of chloroplasts; JIP‐70 is present in the peroxisome and the nucleus; JIP‐50 and JIP‐6 accumulate in vacuoles. The location of JIP‐66 and JIP‐6 confirms their possible physiological role deduced from molecular analysis of their cDNA.
IPB Mainnav Search