zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 12.

Publikation

Ryan, P. T.; Ó’Maoiléidigh, D. S.; Drost, H.-G.; Kwaśniewska, K.; Gabel, A.; Grosse, I.; Graciet, E.; Quint, M.; Wellmer, F.; Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation BMC Genomics 16, 488, (2015) DOI: 10.1186/s12864-015-1699-6

BackgroundThe formation of flowers is one of the main model systems to elucidate the molecular mechanisms that control developmental processes in plants. Although several studies have explored gene expression during flower development in the model plant Arabidopsis thaliana on a genome-wide scale, a continuous series of expression data from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to close this information gap and to generate a reference dataset for stage-specific gene expression during flower formation.ResultsUsing a floral induction system, we collected floral buds at 14 different stages from the time of initiation until maturation. Using whole-genome microarray analysis, we identified 7,405 genes that exhibit rapid expression changes during flower development. These genes comprise many known floral regulators and we found that the expression profiles for these regulators match their known expression patterns, thus validating the dataset. We analyzed groups of co-expressed genes for over-represented cellular and developmental functions through Gene Ontology analysis and found that they could be assigned specific patterns of activities, which are in agreement with the progression of flower development. Furthermore, by mapping binding sites of floral organ identity factors onto our dataset, we were able to identify gene groups that are likely predominantly under control of these transcriptional regulators. We further found that the distribution of paralogs among groups of co-expressed genes varies considerably, with genes expressed predominantly at early and intermediate stages of flower development showing the highest proportion of such genes.ConclusionsOur results highlight and describe the dynamic expression changes undergone by a large number of genes during flower development. They further provide a comprehensive reference dataset for temporal gene expression during flower formation and we demonstrate that it can be used to integrate data from other genomics approaches such as genome-wide localization studies of transcription factor binding sites.
Publikation

Delker, C.; Pöschl, Y.; Raschke, A.; Ullrich, K.; Ettingshausen, S.; Hauptmann, V.; Grosse, I.; Quint, M.; Natural Variation of Transcriptional Auxin Response Networks in Arabidopsis thaliana Plant Cell 22, 2184-2200, (2010) DOI: 10.1105/tpc.110.073957

Natural variation has been observed for various traits in Arabidopsis thaliana. Here, we investigated natural variation in the context of physiological and transcriptional responses to the phytohormone auxin, a key regulator of plant development. A survey of the general extent of natural variation to auxin stimuli revealed significant physiological variation among 20 genetically diverse natural accessions. Moreover, we observed dramatic variation on the global transcriptome level after induction of auxin responses in seven accessions. Although we detect isolated cases of major-effect polymorphisms, sequencing of signaling genes revealed sequence conservation, making selective pressures that favor functionally different protein variants among accessions unlikely. However, coexpression analyses of a priori defined auxin signaling networks identified variations in the transcriptional equilibrium of signaling components. In agreement with this, cluster analyses of genome-wide expression profiles followed by analyses of a posteriori defined gene networks revealed accession-specific auxin responses. We hypothesize that quantitative distortions in the ratios of interacting signaling components contribute to the detected transcriptional variation, resulting in physiological variation of auxin responses among accessions.
Publikation

Robson, F.; Okamoto, H.; Patrick, E.; Harris, S.-R.; Wasternack, C.; Brearley, C.; Turner, J. G.; Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability Plant Cell 22, 1143-1160, (2010) DOI: 10.1105/tpc.109.067728

Jasmonate (JA) activates plant defense, promotes pollen maturation, and suppresses plant growth. An emerging theme in JA biology is its involvement in light responses; here, we examine the interdependence of the JA- and light-signaling pathways in Arabidopsis thaliana. We demonstrate that mutants deficient in JA biosynthesis and signaling are deficient in a subset of high irradiance responses in far-red (FR) light. These mutants display exaggerated shade responses to low, but not high, R/FR ratio light, suggesting a role for JA in phytochrome A (phyA) signaling. Additionally, we demonstrate that the FR light–induced expression of transcription factor genes is dependent on CORONATINE INSENSITIVE1 (COI1), a central component of JA signaling, and is suppressed by JA. phyA mutants had reduced JA-regulated growth inhibition and VSP expression and increased content of cis-(+)-12-oxophytodienoic acid, an intermediate in JA biosynthesis. Significantly, COI1-mediated degradation of JASMONATE ZIM DOMAIN1-β-glucuronidase (JAZ1-GUS) in response to mechanical wounding and JA treatment required phyA, and ectopic expression of JAZ1-GUS resulted in exaggerated shade responses. Together, these results indicate that JA and phyA signaling are integrated through degradation of the JAZ1 protein, and both are required for plant responses to light and stress.
Publikation

Mugford, S. G.; Yoshimoto, N.; Reichelt, M.; Wirtz, M.; Hill, L.; Mugford, S. T.; Nakazato, Y.; Noji, M.; Takahashi, H.; Kramell, R.; Gigolashvili, T.; Flügge, U.-I.; Wasternack, C.; Gershenzon, J.; Hell, R.; Saito, K.; Kopriva, S.; Disruption of Adenosine-5′-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites Plant Cell 21, 910-927, (2009) DOI: 10.1105/tpc.109.065581

Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5′-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3′-phosphoadenosine 5′-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates.
Publikation

Lee, C.-W.; Efetova, M.; Engelmann, J. C.; Kramell, R.; Wasternack, C.; Ludwig-Müller, J.; Hedrich, R.; Deeken, R.; Agrobacterium tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana Plant Cell 21, 2948-2962, (2009) DOI: 10.1105/tpc.108.064576

Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis–Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria.
Publikation

Brüx, A.; Liu, T.-Y.; Krebs, M.; Stierhof, Y.-D.; Lohmann, J. U.; Miersch, O.; Wasternack, C.; Schumacher, K.; Reduced V-ATPase Activity in the trans-Golgi Network Causes Oxylipin-Dependent Hypocotyl Growth Inhibition in Arabidopsis Plant Cell 20, 1088-1100, (2008) DOI: 10.1105/tpc.108.058362

Regulated cell expansion allows plants to adapt their morphogenesis to prevailing environmental conditions. Cell expansion is driven by turgor pressure created by osmotic water uptake and is restricted by the extensibility of the cell wall, which in turn is regulated by the synthesis, incorporation, and cross-linking of new cell wall components. The vacuolar H+-ATPase (V-ATPase) could provide a way to coordinately regulate turgor pressure and cell wall synthesis, as it energizes the secondary active transport of solutes across the tonoplast and also has an important function in the trans-Golgi network (TGN), which affects synthesis and trafficking of cell wall components. We have previously shown that det3, a mutant with reduced V-ATPase activity, has a severe defect in cell expansion. However, it was not clear if this is caused by a defect in turgor pressure or in cell wall synthesis. Here, we show that inhibition of the tonoplast-localized V-ATPase subunit isoform VHA-a3 does not impair cell expansion. By contrast, inhibition of the TGN-localized isoform VHA-a1 is sufficient to restrict cell expansion. Furthermore, we provide evidence that the reduced hypocotyl cell expansion in det3 is conditional and due to active, hormone-mediated growth inhibition caused by a cell wall defect.
Publikation

Ellis, C.; Karafyllidis, I.; Wasternack, C.; Turner, J. G.; The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses Plant Cell 14, 1557-1566, (2002) DOI: 10.1105/tpc.002022

Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.
Publikation

Kramell, R.; Miersch, O.; Schneider, G.; Wasternack, C.; Liquid chromatography of jasmonic acid amine conjugates Chromatographia 49, 42-46, (1999) DOI: 10.1007/BF02467185

Racemic jasmonic acid (3R,7R/3S,7S)-(±)-JA) was chemically conjugated with different biogenic amines originating from aliphatic and aromatic α-amino acids by decarboxylation. The resulting isomeric compounds were subjected to reversed-phase high-performance liquid chromatography (HPLC) and to HPLC on the chiral stationary phases Chiralpak AS and Nucleodex β-PM. Under reversed-phase conditions, all the homologous amine derivatives tested could be separated from each other except the JA-conjugates containing 2-phenyl-ethylamine and 3-methylbutylamine. On both chiral supports the (3R,7R)-(−)-JA conjugates eluted earlier than those of the enantiomeric counterpart (3S,7S)-(+)-JA. On Chiralpak AS all the isomers studied could be separated to baseline with a mobile phase containingn-hexane and 2-propanol. The calculated resolution factors were between 1.80 and 4.17. The pairs of isomers were also chromatographed on the cyclodextrin stationary phase Nucleodex β-PM with methanol-triethylammonium acetate buffer as mobile phase. Under these conditions resolution factors were between 0.74 and 1.29. The individual isomers were chiroptically characterized by measurement of their circular dichroism.
Publikation

Ward, J. L.; Gaskin, P.; Beale, M. H.; Sessions, R.; Koda, Y.; Wasternack, C.; Molecular modelling, synthesis and biological activity of methyl 3-methyljasmonate and related derivatives Tetrahedron 53, 8181-8194, (1997) DOI: 10.1016/S0040-4020(97)00485-7

Methyl 3-methyljasmonate was synthesised from methyl jasmonate via methyl 3,7-dehydrojasmonate. Molecular modelling predicted an increase in the proportion of cis-orientated side-chains for equilibrated 3-methyl-substituted jasmonate. The synthetic 3-methyljasmonate was shown by gc-ms analysis to equilibrate to a 2:1 ratio of isomers, which appeared from the NMR spectra to comprise mainly the cis-isomer. Surprisingly, both 3,7-dehydro- and 3-methyl-derivatives were inactive in four well established jasmonate bioassays. Methyl-2-methyljasmonate was synthesised and also found to be inactive. Methyl 4,5-dehydrojasmonate was prepared, via the 5-diazo derivative. Both of these compounds have low activity. Our results are discussed with reference to previous knowledge of jasmonate structure-activity relationships and indicate that there are stringent steric demands in jasmonate-receptor interactions.
Publikation

Kramell, R.; Schneider, G.; Miersch, O.; Chiral separation of amide conjugates of jasmonic acid by liquid chromatography Chromatographia 45, 104-108, (1997) DOI: 10.1007/BF02505545

Synthetic amide conjugates of (−)-jasmonic acid and its (+)-enantiomer were resolved by means of chiral liquid chromatography. The diastereomeric pairs prepared by chemical reaction of (±)-jasmonic acid with a series of (S)- or (R)-amino acids and with some (S)-amino acid alcohols were completely separated on Chiralpak AS using a mixture of n-hexane/2-propanal as mobile phase. The retention data indicate that the (−)-jasmonic acid conjugates eluted faster than those of the (+)-enantiomer, independent on the configuration of the bound amino acid. Likewise, enantiomeric derivatives of (±)-jasmonic acid and non-chiral amino acids were completely separated on the chiral stationary phase and showed the same elution sequence. The resolution factors,Rs, were found to range between 1.13 and 6.64. The separated compounds were chiropatically analyzed by measurement of the circular dichroism.
IPB Mainnav Search