zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.


Otto, M.; Naumann, C.; Brandt, W.; Wasternack, C.; Hause, B.; Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members Plants 5, 3, (2016) DOI: 10.3390/plants5010003

Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles.

BERGER, S.; Weichert, H.; Porzel, A.; Wasternack, C.; Kühn, H.; Feussner, I.; Enzymatic and non-enzymatic lipid peroxidation in leaf development BBA-Mol. Cell Biol. Lipids 1533, 266-276, (2001) DOI: 10.1016/S1388-1981(01)00161-5

Enzymatic and non-enzymatic lipid peroxidation has been implicated in programmed cell death, which is a major process of leaf senescence. To test this hypothesis we developed a high-performance liquid chromatography (HPLC) method for a simultaneous analysis of the major hydro(pero)xy polyenoic fatty acids. Quantities of lipid peroxidation products in leaves of different stages of development including natural senescence indicated a strong increase in the level of oxygenated polyenoic fatty acids (PUFAs) during the late stages of leaf senescence. Comprehensive structural elucidation of the oxygenation products by means of HPLC, gas chromatography/mass spectrometry and 1H nuclear magnetic resonance suggested a non-enzymatic origin. However, in some cases a small share of specifically oxidized PUFAs was identified suggesting involvement of lipid peroxidizing enzymes. To inspect the possible role of enzymatic lipid peroxidation in leaf senescence, we analyzed the abundance of lipoxygenases (LOXs) in rosette leaves of Arabidopsis. LOXs and their product (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid were exclusively detected in young green leaves. In contrast, in senescing leaves the specific LOX products were overlaid by large amounts of stereo-random lipid peroxidation products originating from non-enzymatic oxidation. These data indicate a limited contribution of LOXs to total lipid peroxidation, and a dominant role of non-enzymatic lipid peroxidation in late stages of leaf development.

Kramell, R.; Miersch, O.; Schneider, G.; Wasternack, C.; Liquid chromatography of jasmonic acid amine conjugates Chromatographia 49, 42-46, (1999) DOI: 10.1007/BF02467185

Racemic jasmonic acid (3R,7R/3S,7S)-(±)-JA) was chemically conjugated with different biogenic amines originating from aliphatic and aromatic α-amino acids by decarboxylation. The resulting isomeric compounds were subjected to reversed-phase high-performance liquid chromatography (HPLC) and to HPLC on the chiral stationary phases Chiralpak AS and Nucleodex β-PM. Under reversed-phase conditions, all the homologous amine derivatives tested could be separated from each other except the JA-conjugates containing 2-phenyl-ethylamine and 3-methylbutylamine. On both chiral supports the (3R,7R)-(−)-JA conjugates eluted earlier than those of the enantiomeric counterpart (3S,7S)-(+)-JA. On Chiralpak AS all the isomers studied could be separated to baseline with a mobile phase containingn-hexane and 2-propanol. The calculated resolution factors were between 1.80 and 4.17. The pairs of isomers were also chromatographed on the cyclodextrin stationary phase Nucleodex β-PM with methanol-triethylammonium acetate buffer as mobile phase. Under these conditions resolution factors were between 0.74 and 1.29. The individual isomers were chiroptically characterized by measurement of their circular dichroism.

Ward, J. L.; Gaskin, P.; Beale, M. H.; Sessions, R.; Koda, Y.; Wasternack, C.; Molecular modelling, synthesis and biological activity of methyl 3-methyljasmonate and related derivatives Tetrahedron 53, 8181-8194, (1997) DOI: 10.1016/S0040-4020(97)00485-7

Methyl 3-methyljasmonate was synthesised from methyl jasmonate via methyl 3,7-dehydrojasmonate. Molecular modelling predicted an increase in the proportion of cis-orientated side-chains for equilibrated 3-methyl-substituted jasmonate. The synthetic 3-methyljasmonate was shown by gc-ms analysis to equilibrate to a 2:1 ratio of isomers, which appeared from the NMR spectra to comprise mainly the cis-isomer. Surprisingly, both 3,7-dehydro- and 3-methyl-derivatives were inactive in four well established jasmonate bioassays. Methyl-2-methyljasmonate was synthesised and also found to be inactive. Methyl 4,5-dehydrojasmonate was prepared, via the 5-diazo derivative. Both of these compounds have low activity. Our results are discussed with reference to previous knowledge of jasmonate structure-activity relationships and indicate that there are stringent steric demands in jasmonate-receptor interactions.
IPB Mainnav Search