zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 17.

Publikation

Song, S.; Qi, T.; Wasternack, C.; Xie, D. Jasmonate signaling and crosstalk with gibberellin and ethylene Curr Opin Plant Biol. 21 , 112-119, (2014) DOI: 10.1016/j.pbi.2014.07.005

The phytohormone jasmonate (JA) plays essential roles in plant growth, development and defense. In response to the JA signal, the CORONATINE INSENSITIVE 1 (COI1)-based SCF complexes recruit JASMONATE ZIM-domain (JAZ) repressors for ubiquitination and degradation, and subsequently regulate their downstream signaling components essential for various JA responses. Tremendous progress has been made in understanding the JA signaling pathway and its crosstalk with other phytohormone pathways during the past two decades. Recent studies have revealed that a variety of positive and negative regulators act as targets of JAZs to control distinctive JA responses, and that JAZs and these regulators function as crucial interfaces to mediate synergy and antagonism between JA and other phytohormones. Owing to different regulatory players in JA perception and JA signaling, a fine-tuning of JA-dependent processes in plant growth, development and defense is achieved. In this review, we will summarize the latest progresses in JA signaling and its crosstalk with gibberellin and ethylene.
Publikation

Leon-Reyes, A.; Van der Does, D.; De Lange, E. S.; Delker, C.; Wasternack, C.; Van Wees, S. C. M.; Ritsema, T.; Pieterse, C. M. J. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway Planta 232, 1423-1432, (2010) DOI: 10.1007/s00425-010-1265-z

Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JAresponsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.
Publikation

Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development Annals of Botany 100, 681-697, (2007) DOI: 10.1093/aob/mcm079

0
Publikation

Gerhard, B.; Fischer, K.; Balkenhohl, T.J.; Pohnert, G.; Kühn, H.; Wasternack, C.; Feussner, I. Lipoxygenase-mediated metabolism of storage lipids in germinating sunflower cotyledons and b-oxidation of (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid by the cotyledonary glyoxysomes Planta 220, 919-930, (2005)

0
Publikation

Schneider, K.; Kienow, L.; Schmelzer, E.; Colby, T.; Bartsch, M.; Miersch, O.; Wasternack, C.; Kombrink, E.; Stuible, H.-P. A new type of peroxisomal acyl-coenzyme A synthetase from <EM>Arabidopsis thaliana</EM> has the catalytic capacity of activate biosynthetic precursors of jasmonic acid J. Biol. Chem. 280, 13962-13972, (2005)

0
Publikation

Gidda, K.S.; Miersch, O.; Schmidt, J.; Wasternack, C.; Varin, L. Biochemical and molecular characterization of a hydroxy-jasmonate sulfotransferase from Arabidopsis thaliana J. Biol. Chem. 278, 17895-17900, (2003) DOI: 10.1074/jbc.M211943200

12-Hydroxyjasmonate, also known as tuberonic acid, was first isolated from Solanum tuberosum and was shown to have tuber-inducing properties. It is derived from the ubiquitously occurring jasmonic acid, an important signaling molecule mediating diverse developmental processes and plant defense responses. We report here that the gene AtST2a from Arabidopsis thaliana encodes a hydroxyjasmonate sulfotransferase. The recombinant AtST2a protein was found to exhibit strict specificity for 11- and 12-hydroxyjasmonate with Km values of 50 and 10 µM, respectively. Furthermore, 12-hydroxyjasmonate and its sulfonated derivative are shown to be naturally occurring in A. thaliana. The exogenous application of methyljasmonate to A. thaliana plants led to increased levels of both metabolites, whereas treatment with 12-hydroxyjasmonate led to increased level of 12-hydroxyjasmonate sulfate without affecting the endogenous level of jasmonic acid. AtST2a expression was found to be induced following treatment with methyljasmonate and 12-hydroxyjasmonate. In contrast, the expression of the methyljasmonate-responsive gene Thi2.1, a marker gene in plant defense responses, is not induced upon treatment with 12-hydroxyjasmonate indicating the existence of independent signaling pathways responding to jasmonic acid and 12-hydroxyjasmonic acid. Taken together, the results suggest that the hydroxylation and sulfonation reactions might be components of a pathway that inactivates excess jasmonic acid in plants. Alternatively, the function of AtST2a might be to control the biological activity of 12-hydroxyjasmonic acid.
Publikation

Schilling, S.; Niestroj, A.J.; Rahfeld, J.-U.; Hoffmann, T.; Wermann, M.; Zunkel, K.; Wasternack, C.; Demuth, H.-U. Identification of human glutaminyl cyclase as a metalloenzyme - Potent inhibition by imidazole derivatives and heterocyclic chelators J. Biol. Chem. 278, 49773-49779, (2003)

0
Publikation

Weichert, H.; Kolbe, A.; Kraus, A.; Wasternack, C.; Feussner, I. Metabolic profiling of oxylipins in germinating cucumber seedlings - lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes Planta 215, 612-619, (2002)

0
Publikation

Nibbe, M.; Hilpert, B.; Wasternack, C.; Miersch, O.; Apel, K. Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes Planta 216, 120-128, (2002)

0
Publikation

Ziegler, J.; Stenzel, I.; Hause, B.; Maucher, H.; Miersch, O.; Hamberg, M.; Grimm, M.; Ganal, M.; Wasternack, C. Molecular cloning of allene oxide cyclase: The enzyme establishing the stereochemistry of octadecanoids and jasmonates J. Biol. Chem. 275, 19132-19138, (2000) DOI: 10.1074/jbc.M002133200

Allene oxide cyclase (AOC) catalyses the stereospecific cyclisation of an unstable allene oxide to 9(S),13(S)-12-oxo-10,15(Z)-phytodienoic acid, the ultimate precursor of jasmonic acid. This enzyme has previously been purified, and two identical N-terminal peptides were found suggesting AOC to be a homodimeric protein. Furthermore, the native protein was N-terminal processed. Using degenerate primers, a PCR fragment could be generated from tomato, which was further used to isolate a full length cDNA clone of 1kb coding for a protein with 245 amino acids with a molecular mass of 26 kDa. Whereas expression of the whole coding region failed to detect AOC activity, a 5-'truncated protein showed high activity, suggesting that additional amino acids impair the enzymatic function. Steric analysis of the 12-oxo-phytodienoic acid formed by the recombinant AOC revealed exclusive (>99%) formation of the 9(S),13(S) enantiomer. Exclusive formation of this enantiomer was also found in wounded tomato leaves. Southern analysis and genetic mapping revealed the existence of a single gene for AOC located on chromosome 2 of tomato. Inspection of the N-terminus revealed the presence of a chloroplastic transit peptide, and the location of AOC protein in that compartment could be shown by immunohistochemical methods. Concomitant with the jasmonate levels, the accumulation of AOC mRNA was transiently induced after wounding of tomato leaves.
IPB Mainnav Search