zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 17.

Publikation

Robson, F.; Okamoto, H.; Patrick, E.; Harris, S.-R.; Wasternack, C.; Brearley, C.; Turner, J. G.; Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability Plant Cell 22, 1143-1160, (2010) DOI: 10.1105/tpc.109.067728

Jasmonate (JA) activates plant defense, promotes pollen maturation, and suppresses plant growth. An emerging theme in JA biology is its involvement in light responses; here, we examine the interdependence of the JA- and light-signaling pathways in Arabidopsis thaliana. We demonstrate that mutants deficient in JA biosynthesis and signaling are deficient in a subset of high irradiance responses in far-red (FR) light. These mutants display exaggerated shade responses to low, but not high, R/FR ratio light, suggesting a role for JA in phytochrome A (phyA) signaling. Additionally, we demonstrate that the FR light–induced expression of transcription factor genes is dependent on CORONATINE INSENSITIVE1 (COI1), a central component of JA signaling, and is suppressed by JA. phyA mutants had reduced JA-regulated growth inhibition and VSP expression and increased content of cis-(+)-12-oxophytodienoic acid, an intermediate in JA biosynthesis. Significantly, COI1-mediated degradation of JASMONATE ZIM DOMAIN1-β-glucuronidase (JAZ1-GUS) in response to mechanical wounding and JA treatment required phyA, and ectopic expression of JAZ1-GUS resulted in exaggerated shade responses. Together, these results indicate that JA and phyA signaling are integrated through degradation of the JAZ1 protein, and both are required for plant responses to light and stress.
Publikation

Leon-Reyes, A.; Van der Does, D.; De Lange, E. S.; Delker, C.; Wasternack, C.; Van Wees, S. C. M.; Ritsema, T.; Pieterse, C. M. J.; Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway Planta 232, 1423-1432, (2010) DOI: 10.1007/s00425-010-1265-z

Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.
Publikation

Mugford, S. G.; Yoshimoto, N.; Reichelt, M.; Wirtz, M.; Hill, L.; Mugford, S. T.; Nakazato, Y.; Noji, M.; Takahashi, H.; Kramell, R.; Gigolashvili, T.; Flügge, U.-I.; Wasternack, C.; Gershenzon, J.; Hell, R.; Saito, K.; Kopriva, S.; Disruption of Adenosine-5′-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites Plant Cell 21, 910-927, (2009) DOI: 10.1105/tpc.109.065581

Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5′-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3′-phosphoadenosine 5′-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates.
Publikation

Lee, C.-W.; Efetova, M.; Engelmann, J. C.; Kramell, R.; Wasternack, C.; Ludwig-Müller, J.; Hedrich, R.; Deeken, R.; Agrobacterium tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana Plant Cell 21, 2948-2962, (2009) DOI: 10.1105/tpc.108.064576

Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis–Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria.
Publikation

Brüx, A.; Liu, T.-Y.; Krebs, M.; Stierhof, Y.-D.; Lohmann, J. U.; Miersch, O.; Wasternack, C.; Schumacher, K.; Reduced V-ATPase Activity in the trans-Golgi Network Causes Oxylipin-Dependent Hypocotyl Growth Inhibition in Arabidopsis Plant Cell 20, 1088-1100, (2008) DOI: 10.1105/tpc.108.058362

Regulated cell expansion allows plants to adapt their morphogenesis to prevailing environmental conditions. Cell expansion is driven by turgor pressure created by osmotic water uptake and is restricted by the extensibility of the cell wall, which in turn is regulated by the synthesis, incorporation, and cross-linking of new cell wall components. The vacuolar H+-ATPase (V-ATPase) could provide a way to coordinately regulate turgor pressure and cell wall synthesis, as it energizes the secondary active transport of solutes across the tonoplast and also has an important function in the trans-Golgi network (TGN), which affects synthesis and trafficking of cell wall components. We have previously shown that det3, a mutant with reduced V-ATPase activity, has a severe defect in cell expansion. However, it was not clear if this is caused by a defect in turgor pressure or in cell wall synthesis. Here, we show that inhibition of the tonoplast-localized V-ATPase subunit isoform VHA-a3 does not impair cell expansion. By contrast, inhibition of the TGN-localized isoform VHA-a1 is sufficient to restrict cell expansion. Furthermore, we provide evidence that the reduced hypocotyl cell expansion in det3 is conditional and due to active, hormone-mediated growth inhibition caused by a cell wall defect.
Publikation

Gerhardt, B.; Fischer, K.; Balkenhohl, T. J.; Pohnert, G.; Kühn, H.; Wasternack, C.; Feussner, I.; Lipoxygenase-mediated metabolism of storage lipids in germinating sunflower cotyledons and β-oxidation of (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid by the cotyledonary glyoxysomes Planta 220, 919-930, (2005) DOI: 10.1007/s00425-004-1408-1

During the early stages of germination, a lipid-body lipoxygenase is expressed in the cotyledons of sunflowers (Helianthus annuus L.). In order to obtain evidence for the in vivo activity of this enzyme during germination, we analyzed the lipoxygenase-dependent metabolism of polyunsaturated fatty acids esterified in the storage lipids. For this purpose, lipid bodies were isolated from etiolated sunflower cotyledons at different stages of germination, and the storage triacylglycerols were analyzed for oxygenated derivatives. During the time course of germination the amount of oxygenated storage lipids was strongly augmented, and we detected triacylglycerols containing one, two or three residues of (9Z,11E,13S)-13-hydro(pero)xy-octadeca-9,11-dienoic acid. Glyoxysomes from etiolated sunflower cotyledons converted (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid to (9Z,11E)-13-oxo-octadeca-9,11-dienoic acid via an NADH-dependent dehydrogenase reaction. Both oxygenated fatty acid derivatives were activated to the corresponding CoA esters and subsequently metabolized to compounds of shorter chain length. Cofactor requirement and formation of acetyl-CoA indicate degradation via β-oxidation. However, β-oxidation only proceeded for two consecutive cycles, leading to accumulation of a medium-chain metabolite carrying an oxo group at C-9, equivalent to C-13 of the parent (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid. Short-chain β-oxidation intermediates were not detected during incubation. Similar results were obtained when 13-hydroxy octadecanoic acid was used as β-oxidation substrate. On the other hand, the degradation of (9Z,11E)-octadeca-9,11-dienoic acid was accompanied by the appearance of short-chain β-oxidation intermediates in the reaction mixture. The results suggest that the hydroxyl/oxo group at C-13 of lipoxygenase-derived fatty acids forms a barrier to continuous β-oxidation by glyoxysomes.
Publikation

Weichert, H.; Kolbe, A.; Kraus, A.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins in germinating cucumber seedlings - lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes Planta 215, 612-619, (2002) DOI: 10.1007/s00425-002-0779-4

A particular isoform of lipoxygenase (LOX) localized on lipid bodies was shown by earlier investigations to play a role in initiating the mobilization of triacylglycerols during seed germination. Here, further physiological functions of LOXs within whole cotyledons of cucumber (Cucumis sativus L.) were analyzed by measuring the endogenous amounts of LOX-derived products. The lipid-body LOX-derived esterified (13S)-hydroperoxy linoleic acid was the dominant metabolite of the LOX pathway in this tissue. It accumulated to about 14 µmol/g fresh weight, which represented about 6% of the total amount of linoleic acid in cotyledons. This LOX product was not only reduced to its hydroxy derivative, leading to degradation by β-oxidation, but alternatively it was metabolized by fatty acid hydroperoxide lyase leading to formation of hexanal as well. Furthermore, the activities of LOX forms metabolizing linolenic acid were detected by measuring the accumulation of volatile aldehydes and the allene oxide synthase-derived metabolite jasmonic acid. The first evidence is presented for an involvement of a lipid-body LOX form in the production of volatile aldehydes.
Publikation

Schilling, S.; Hoffmann, T.; Rosche, F.; Manhart, S.; Wasternack, C.; Demuth, H.-U.; Heterologous Expression and Characterization of Human Glutaminyl Cyclase: Evidence for a Disulfide Bond with Importance for Catalytic Activity Biochemistry 41, 10849-10857, (2002) DOI: 10.1021/bi0260381

Glutaminyl cyclase (QC, EC 2.3.2.5) catalyzes the formation of pyroglutamate residues from glutamine at the N-terminus of peptides and proteins. In the current study, human QC was functionally expressed in the secretory pathway of Pichia pastoris, yielding milligram quantities after purification from the supernatant of a 5 L fermentation. Initial characterization studies of the recombinant QC using MALDI-TOF mass spectrometry revealed correct proteolytic processing and N-glycosylation at both potential sites with similar 2 kDa extensions. CD spectral analysis indicated a high α-helical content, which contrasts with plant QC from Carica papaya. The kinetic parameters for conversion of H-Gln-Tyr-Ala-OH by recombinant human QC were almost identical to those previously reported for purified bovine pituitary QC. However, the results obtained for conversion of H-Gln-Gln-OH, H-Gln-NH2, and H-Gln-AMC were found to be contradictory to previous studies on human QC expressed intracellularly in E. coli. Expression of QC in E. coli showed that approximately 50% of the protein did not contain a disulfide bond that is present in the entire QC expressed in P. pastoris. Further, the enzyme was consistently inactivated by treatment with 15 mM DTT, whereas deglycosylation had no effect on enzymatic activity. Analysis of the fluorescence spectra of the native, reduced, and unfolded human QC point to a conformational change of the protein upon treatment with DTT. In terms of the different enzymatic properties, the consequences of QC expression in different environments are discussed.
Publikation

Nibbe, M.; Hilpert, B.; Wasternack, C.; Miersch, O.; Apel, K.; Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes Planta 216, 120-128, (2002) DOI: 10.1007/s00425-002-0907-1

The jasmonic acid (JA)-dependent regulation of the Thi2.1 gene had previously been exploited for setting up a genetic screen for the isolation of signal transduction mutants of Arabidopsis thaliana (L.) Heynh. that constitutively express the thionin gene. Several cet mutants had been isolated which showed a constitutive expression of the thionin gene. These cet mutants, except for one, also showed spontaneous leaf cell necrosis and were up-regulated in the expression of the PR1 gene, reactions often associated with the systemic acquired resistance (SAR) pathway. Four of these cet mutants, cet1, cet2, cet3 and cet4.1 were crossed with the fad triple and coi1 mutants that are blocked at two steps within the JA-dependent signaling pathway, and with transgenic NahG plants that are deficient in salicylic acid (SA) and are unable to activate SAR. Analysis of the various double-mutant lines revealed that the four cet genes act within a signaling cascade at or prior to branch points from which not only JA-dependent signals but also SA-dependent signaling and cell death pathways diverge.
Publikation

Ellis, C.; Karafyllidis, I.; Wasternack, C.; Turner, J. G.; The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses Plant Cell 14, 1557-1566, (2002) DOI: 10.1105/tpc.002022

Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.
IPB Mainnav Search