zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 12.

Publikation

Ryan, P. T.; Ó’Maoiléidigh, D. S.; Drost, H.-G.; Kwaśniewska, K.; Gabel, A.; Grosse, I.; Graciet, E.; Quint, M.; Wellmer, F.; Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation BMC Genomics 16, 488, (2015) DOI: 10.1186/s12864-015-1699-6

BackgroundThe formation of flowers is one of the main model systems to elucidate the molecular mechanisms that control developmental processes in plants. Although several studies have explored gene expression during flower development in the model plant Arabidopsis thaliana on a genome-wide scale, a continuous series of expression data from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to close this information gap and to generate a reference dataset for stage-specific gene expression during flower formation.ResultsUsing a floral induction system, we collected floral buds at 14 different stages from the time of initiation until maturation. Using whole-genome microarray analysis, we identified 7,405 genes that exhibit rapid expression changes during flower development. These genes comprise many known floral regulators and we found that the expression profiles for these regulators match their known expression patterns, thus validating the dataset. We analyzed groups of co-expressed genes for over-represented cellular and developmental functions through Gene Ontology analysis and found that they could be assigned specific patterns of activities, which are in agreement with the progression of flower development. Furthermore, by mapping binding sites of floral organ identity factors onto our dataset, we were able to identify gene groups that are likely predominantly under control of these transcriptional regulators. We further found that the distribution of paralogs among groups of co-expressed genes varies considerably, with genes expressed predominantly at early and intermediate stages of flower development showing the highest proportion of such genes.ConclusionsOur results highlight and describe the dynamic expression changes undergone by a large number of genes during flower development. They further provide a comprehensive reference dataset for temporal gene expression during flower formation and we demonstrate that it can be used to integrate data from other genomics approaches such as genome-wide localization studies of transcription factor binding sites.
Publikation

Vandenborre, G.; Miersch, O.; Hause, B.; Smagghe, G.; Wasternack, C.; Van Damme, E. J.; Spodoptera littoralis-Induced Lectin Expression in Tobacco Plant Cell Physiol. 50, 1142-1155, (2009) DOI: 10.1093/pcp/pcp065

The induced defense response in plants towards herbivores is mainly regulated by jasmonates and leads to the accumulation of so-called jasmonate-induced proteins. Recently, a jasmonate (JA) inducible lectin called Nicotiana tabacum agglutinin or NICTABA was discovered in tobacco (N. tabacum cv Samsun) leaves. Tobacco plants also accumulate the lectin after insect attack by caterpillars. To study the functional role of NICTABA, the accumulation of the JA precursor 12-oxophytodienoic acid (OPDA), JA as well as different JA metabolites were analyzed in tobacco leaves after herbivory by larvae of the cotton leafworm (Spodoptera littoralis) and correlated with NICTABA accumulation. It was shown that OPDA, JA as well as its methyl ester can trigger NICTABA accumulation. However, hydroxylation of JA and its subsequent sulfation and glucosylation results in inactive compounds that have lost the capacity to induce NICTABA gene expression. The expression profile of NICTABA after caterpillar feeding was recorded in local as well as in systemic leaves, and compared to the expression of several genes encoding defense proteins, and genes encoding a tobacco systemin and the allene oxide cyclase, an enzyme in JA biosynthesis. Furthermore, the accumulation of NICTABA was quanti-fied after S. littoralis herbivory and immunofluorescence microscopy was used to study the localization of NICTABA in the tobacco leaf.
Publikation

Lannoo, N.; Vandenborre, G.; Miersch, O.; Smagghe, G.; Wasternack, C.; Peumans, W. J.; Van Damme, E. J. M.; The Jasmonate-Induced Expression of the Nicotiana tabacum Leaf Lectin Plant Cell Physiol. 48, 1207-1218, (2007) DOI: 10.1093/pcp/pcm090

Previous experiments with tobacco (Nicotiana tabacum L. cv Samsun NN) plants revealed that jasmonic acid methyl ester (JAME) induces the expression of a cytoplasmic/nuclear lectin in leaf cells and provided the first evidence that jasmonates affect the expression of carbohydrate-binding proteins in plant cells. To corroborate the induced accumulation of relatively large amounts of a cytoplasmic/nuclear lectin, a detailed study was performed on the induction of the lectin in both intact tobacco plants and excised leaves. Experiments with different stress factors demonstrated that the lectin is exclusively induced by exogeneously applied jasmonic acid and JAME, and to a lesser extent by insect herbivory. The lectin concentration depends on leaf age and the position of the tissue in the leaf. JAME acts systemically in intact plants but very locally in excised leaves. Kinetic analyses indicated that the lectin is synthesized within 12 h exposure time to JAME, reaching a maximum after 60 h. After removal of JAME, the lectin progressively disappears from the leaf tissue. The JAME-induced accumulation of an abundant nuclear/cytoplasmic lectin is discussed in view of the possible role of this lectin in the plant.
Publikation

Fortes, A. M.; Miersch, O.; Lange, P. R.; Malhó, R.; Testillano, P. S.; Risueño, M. d. C.; Wasternack, C.; Pais, M. S.; Expression of Allene Oxide Cyclase and Accumulation of Jasmonates during Organogenic Nodule Formation from Hop (Humulus lupulus var. Nugget) Internodes Plant Cell Physiol. 46, 1713-1723, (2005) DOI: 10.1093/pcp/pci187

A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its stereoisomeric precursor, cis-(+)-12-oxophytodienoic acid (OPDA), which is catalyzed by allene oxide cyclase (AOC, EC 5.3.99.6). A cDNA of AOC was isolated from Humulus lupulus var. Nugget. The ORF of 765 bp encodes a 255 amino acid protein, which carries a putative chloroplast targeting sequence. The recombinant protein without its putative chloroplast target sequence showed significant AOC activity. Previously we demonstrated that wounding induces organogenic nodule formation in hop. Here we show that the AOC transcript level increases in response to wounding of internodes, peaking between 2 and 4 h after wounding. In addition, Western blot analysis showed elevated levels of AOC peaking 24 h after internode inoculation. The AOC increase was accompanied by increased JA levels 24 h after wounding, whereas OPDA had already reached its highest level after 12 h. AOC is mostly present in the vascular bundles of inoculated internodes. During prenodule and nodule formation, AOC levels were still high. JA and OPDA levels decreased down to 10 and 118 pmol (g FW)–1, respectively, during nodule formation, but increased during plantlet regeneration. Double immunolocalization analysis of AOC and Rubisco in connection with lugol staining showed that AOC is present in amyloplasts of prenodular cells and in the chloroplasts of vacuolated nodular cells, whereas meristematic cells accumulated little AOC. These data suggest a role of AOC and jasmonates in organogenic nodule formation and plantlet regeneration from these nodules.
Publikation

Abdala, G.; Miersch, O.; Kramell, R.; Vigliocco, A.; Agostini, E.; Forchetti, G.; Alemano, S.; Jasmonate and octadecanoid occurrence in tomato hairy roots. Endogenous level changes in response to NaCl Plant Growth Regul. 40, 21-27, (2003) DOI: 10.1023/A:1023016412454

Jasmonic acid biosynthesis occurs in leaves and there is also evidence of a similar pathway in roots. The expression of lipoxygenase, allene oxide cyclase and low amounts of transcripts of allene oxide synthase in tomato roots indicates that some steps of the jasmonate synthesis may occur in these organs. Thus, the aim of the present work was to study the jasmonate and octadecanoid occurrence in tomato roots using isolated cultures of hairy roots. These were obtained by the transformation of cv. Pera roots with Agrobacterium rhyzogenes. Also we investigated the effect of NaCl stress on the endogenous levels of these compounds. Jasmonic acid, 12-oxophytodienoic acid and their methylated derivatives, as well as a jasmonate-isoleucine conjugate, were present in control hairy roots of 30 d of culture. The 12-oxophytodienoic acid and its methylated derivative showed higher levels than jasmonic acid and its methylated form, although the content of the conjugate was the same as that of jasmonic acid. After salinization of hairy roots for 14, 20 and 30 d, free jasmonates and octadecanoids were measured. Fourteen days after salt treatment, increased levels of these compounds were found, jasmonic acid and 12-oxophytodienoic acid showed the most remarkable rise. 11-OH-jasmonic acid was found at 14 d of culture in control and salt-treated hairy roots; whereas the 12-OH- form of jasmonic acid was only detected in the salt-treated hairy roots. Agrobacterium rhizogenes cultures did not produce jasmonates and/or octadecanoids.
Publikation

Hause, B.; Hause, G.; Kutter, C.; Miersch, O.; Wasternack, C.; Enzymes of Jasmonate Biosynthesis Occur in Tomato Sieve Elements Plant Cell Physiol. 44, 643-648, (2003) DOI: 10.1093/pcp/pcg072

The allene oxide cyclase (AOC) is a plastid-located enzyme in the biosynthesis of the signaling compound jasmonic acid (JA). In tomato, AOC occurs specifically in ovules and vascular bundles [Hause et al. (2000)PlantJ. 24; 113]. Immunocytological analysis of longitudinal sections of petioles and flower stalks revealed the occurrence of AOC in companion cells (CC) and sieve elements (SE). Electron microscopic analysis led to the conclusion that the AOC-containing structures of SE are plastids. AOC was not detected in SE of 35S::AOCantisense plants. The enzymes preceding AOC in JA biosynthesis, the allene oxide synthase (AOS) and the lipoxygenase, were also detected in SE. In situ hybridization showed that the SE are free of AOC-mRNA suggesting AOC protein traffic from CC to SE via plasmodesmata. A control by in situ hybridization of AOS mRNA coding for a protein with a size above the exclusion limit of plasmodesmata indicated mRNA in CC and SE. The data suggest that SE carry the capacity to form 12-oxo-phytodienoic acid, the unique precursor of JA. Together with preferential generation of JA in vascular bundles [Stenzel et al. (2003)Plant J. 33: 577], the data support a role of JA in systemic wound signaling.
Publikation

Ortel, B.; Atzorn, R.; Hause, B.; Feussner, I.; Miersch, O.; Wasternack, C.; Jasmonate-induced gene expression of barley (Hordeum vulgare) leaves - the link between jasmonate and abscisic acid Plant Growth Regul. 29, 113-122, (1999) DOI: 10.1023/A:1006212017458

In barley leaves a group of genes is expressed in response to treatment with jasmonates and abscisic acid (ABA) [21]. One of these genes coding for a jasmonate-induced protein of 23 kDa (JIP-23) was analyzed to find out the link between ABA and jasmonates by recording its expression upon modulating independently, the endogenous level of both of them. By use of inhibitors of JA synthesis and ABA degradation, and the ABA-deficient mutant Az34, as well as of cultivar-specific differences, it was shown that endogenous jasmonate increases are necessary and sufficient for expression of this gene. The endogenous rise of ABA did not induce synthesis of JIP-23, whereas exogenous ABA did not act via jasmonates. Different signalling pathways are suggested and discussed.
Publikation

Kramell, R.; Miersch, O.; Schneider, G.; Wasternack, C.; Liquid chromatography of jasmonic acid amine conjugates Chromatographia 49, 42-46, (1999) DOI: 10.1007/BF02467185

Racemic jasmonic acid (3R,7R/3S,7S)-(±)-JA) was chemically conjugated with different biogenic amines originating from aliphatic and aromatic α-amino acids by decarboxylation. The resulting isomeric compounds were subjected to reversed-phase high-performance liquid chromatography (HPLC) and to HPLC on the chiral stationary phases Chiralpak AS and Nucleodex β-PM. Under reversed-phase conditions, all the homologous amine derivatives tested could be separated from each other except the JA-conjugates containing 2-phenyl-ethylamine and 3-methylbutylamine. On both chiral supports the (3R,7R)-(−)-JA conjugates eluted earlier than those of the enantiomeric counterpart (3S,7S)-(+)-JA. On Chiralpak AS all the isomers studied could be separated to baseline with a mobile phase containingn-hexane and 2-propanol. The calculated resolution factors were between 1.80 and 4.17. The pairs of isomers were also chromatographed on the cyclodextrin stationary phase Nucleodex β-PM with methanol-triethylammonium acetate buffer as mobile phase. Under these conditions resolution factors were between 0.74 and 1.29. The individual isomers were chiroptically characterized by measurement of their circular dichroism.
Publikation

Ward, J. L.; Gaskin, P.; Beale, M. H.; Sessions, R.; Koda, Y.; Wasternack, C.; Molecular modelling, synthesis and biological activity of methyl 3-methyljasmonate and related derivatives Tetrahedron 53, 8181-8194, (1997) DOI: 10.1016/S0040-4020(97)00485-7

Methyl 3-methyljasmonate was synthesised from methyl jasmonate via methyl 3,7-dehydrojasmonate. Molecular modelling predicted an increase in the proportion of cis-orientated side-chains for equilibrated 3-methyl-substituted jasmonate. The synthetic 3-methyljasmonate was shown by gc-ms analysis to equilibrate to a 2:1 ratio of isomers, which appeared from the NMR spectra to comprise mainly the cis-isomer. Surprisingly, both 3,7-dehydro- and 3-methyl-derivatives were inactive in four well established jasmonate bioassays. Methyl-2-methyljasmonate was synthesised and also found to be inactive. Methyl 4,5-dehydrojasmonate was prepared, via the 5-diazo derivative. Both of these compounds have low activity. Our results are discussed with reference to previous knowledge of jasmonate structure-activity relationships and indicate that there are stringent steric demands in jasmonate-receptor interactions.
Publikation

Kramell, R.; Schneider, G.; Miersch, O.; Chiral separation of amide conjugates of jasmonic acid by liquid chromatography Chromatographia 45, 104-108, (1997) DOI: 10.1007/BF02505545

Synthetic amide conjugates of (−)-jasmonic acid and its (+)-enantiomer were resolved by means of chiral liquid chromatography. The diastereomeric pairs prepared by chemical reaction of (±)-jasmonic acid with a series of (S)- or (R)-amino acids and with some (S)-amino acid alcohols were completely separated on Chiralpak AS using a mixture of n-hexane/2-propanal as mobile phase. The retention data indicate that the (−)-jasmonic acid conjugates eluted faster than those of the (+)-enantiomer, independent on the configuration of the bound amino acid. Likewise, enantiomeric derivatives of (±)-jasmonic acid and non-chiral amino acids were completely separated on the chiral stationary phase and showed the same elution sequence. The resolution factors,Rs, were found to range between 1.13 and 6.64. The separated compounds were chiropatically analyzed by measurement of the circular dichroism.
IPB Mainnav Search