zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Bücher und Buchkapitel

Möller, B.; Bürstenbinder, K.; Semi-Automatic Cell Segmentation from Noisy Image Data for Quantification of Microtubule Organization on Single Cell Level 199-203, (2019) ISBN: 978-1-5386-3641-1 DOI: 10.1109/ISBI.2019.8759145

The structure of the microtubule cytoskeleton provides valuable information related to morphogenesis of cells. The cytoskeleton organizes into diverse patterns that vary in cells of different types and tissues, but also within a single tissue. To assess differences in cytoskeleton organization methods are needed that quantify cytoskeleton patterns within a complete cell and which are suitable for large data sets. A major bottleneck in most approaches, however, is a lack of techniques for automatic extraction of cell contours. Here, we present a semi-automatic pipeline for cell segmentation and quantification of microtubule organization. Automatic methods are applied to extract major parts of the contours and a handy image editor is provided to manually add missing information efficiently. Experimental results prove that our approach yields high-quality contour data with minimal user intervention and serves a suitable basis for subsequent quantitative studies.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates in Plant Growth and Stress Responses (Tran, L.-S. P. & Pal, S., eds.). 221-263, (2014) ISBN: 978-1-4939-0491-4 DOI: 10.1007/978-1-4939-0491-4_8

Jasmonates are lipid-derived compounds which are signals in plant stress responses and development. They are synthesized in chloroplasts and peroxisomes. An endogenous rise occurs upon environmental stimuli or in distinct stages of development such as that of anthers and trichomes or in root growth. Hydroxylation, carboxylation, glucosylation, sulfation, methylation, or conjugation of jasmonic acid (JA) leads to numerous metabolites. Many of them are at least partially biologically inactive. The most bioactive JA is the (+)-7-iso-JA–isoleucine conjugate. Its perception takes place by the SCFCOI1-JAZ-co-receptor complex. At elevated levels of JAs, negative regulators such as JAZ, or JAV are subjected to proteasomal degradation, thereby allowing positively acting transcription factors of the MYC or MYB family to switch on JA-induced gene expression. In case of JAM negative regulation takes place by anatagonism to MYC2. JA and COI1 are dominant signals in gene expression after wounding or in response to necrotrophic pathogens. Cross-talk to salicylic acid, ethylene, auxin, and other hormones occurs. Growth is inhibited by JA, thereby counteracting the growth stimulation by gibberellic acid. Senescence, trichome formation, arbuscular mycorrhiza, and formation of many secondary metabolites are induced by jasmonates. Effects in cold acclimation; in intercropping; during response to herbivores, nematodes, or necrotrophic pathogens; in pre- and post-harvest; in crop quality control; and in biosynthesis of secondary compounds led to biotechnological and agricultural applications.
IPB Mainnav Search