zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Levy, M.; Rachmilevitch, S.; Abel, S.; Transient Agrobacterium-mediated gene expression in the Arabidopsis hydroponics root system for subcellular localization studies Plant Mol. Biol. Rep. 23, 179-184, (2005) DOI: 10.1007/BF02772708

To a great extent, the cellular compartmentalization and molecular interactions are indicative of the function of a protein. The development of simple and efficient tools for testing the subcellular location of proteins is indispensable to elucidate the function of genes in plants. In this report, we assessed the feasibility ofAgrobacterium-mediated transformation of hydroponically grown roots to follow intracellular targeting of proteins fused to green fluorescent protein (GFP). We developed a simple in planta assay for subcellular localization of proteins inArabidopsis roots via transient transformation and tested this method by expressing a GFP fusion of a known nuclear protein, IQD1. Visualization of transiently expressed GFP fusion proteins in roots by means of confocal microscopy is superior to the analysis of green tissues because the roots are virtually transparent and free of chlorophyll autofluorescence.
Publikation

Calderon-Villalobos, L. I.; Kuhnle, C.; Dohmann, E. M.; Li, H.; Bevan, M.; Schwechheimer, C.; The Evolutionarily Conserved TOUGH Protein Is Required for Proper Development of Arabidopsis thaliana Plant Cell 17, 2473-2485, (2005) DOI: 10.1105/tpc.105.031302

In this study, we characterize the evolutionarily conserved TOUGH (TGH) protein as a novel regulator required for Arabidopsis thaliana development. We initially identified TGH as a yeast two-hybrid system interactor of the transcription initiation factor TATA-box binding protein 2. TGH has apparent orthologs in all eukaryotic model organisms with the exception of the budding yeast Saccharomyces cerevisiae. TGH contains domains with strong similarity to G-patch and SWAP domains, protein domains that are characteristic of RNA binding and processing proteins. Furthermore, TGH colocalizes with the splicing regulator SRp34 to subnuclear particles. We therefore propose that TGH plays a role in RNA binding or processing. Arabidopsis tgh mutants display developmental defects, including reduced plant height, polycotyly, and reduced vascularization. We found TGH expression to be increased in the amp1-1 mutant, which is similar to tgh mutants with respect to polycotyly and defects in vascular development. Interestingly, we observed a strong genetic interaction between TGH and AMP1 in that tgh-1 amp1-1 double mutants are extremely dwarfed and severely affected in plant development in general and vascular development in particular when compared with the single mutants.
IPB Mainnav Search