zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Gago, S.; De la Peña, M.; Flores, R.; A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability RNA 11, 1073-1083, (2005) DOI: 10.1261/rna.2230605

Chrysanthemum chlorotic mottle viroid (CChMVd) RNA (398–401 nucleotides) can form hammerhead ribozymes that play a functional role in its replication through a rolling-circle mechanism. In contrast to most other viroids, which adopt rod-like or quasi-rod-like secondary structures of minimal free energy, the computer-predicted conformations of CChMVd and Peach latent mosaic viroid (PLMVd) RNAs are branched. Moreover, the covariations found in a number of natural CChMVd variants support that the same or a closely related conformation exists in vivo. Here we report that the CChMVd natural variability also supports that the branched conformation is additionally stabilized by a kissing-loop interaction resembling another one proposed in PLMVd from in vitro assays. Moreover, site-directed mutagenesis combined with bioassays and progeny analysis showed that: (1) single CChMVd mutants affecting the kissing loops had low or no infectivity at all, whereas infectivity was recovered in double mutants restoring the interaction; (2) mutations affecting the structure of the regions adjacent to the kissing loops reverted to wild type or led to rearranged stems, also supporting their interaction; and (3) the interchange between 4 nucleotides of each of the two kissing loops generated a viable CChMVd variant with eight mutations. PAGE analysis under denaturing and nondenaturing conditions revealed that the kissing-loop interaction determines proper in vitro folding of CChMVd RNA. Preservation of a similar kissing-loop interaction in two hammerhead viroids with an overall low sequence similarity suggests that it facilitates in vivo the adoption and stabilization of a compact folding critical for viroid viability.
Publikation

Calderon-Villalobos, L. I.; Kuhnle, C.; Dohmann, E. M.; Li, H.; Bevan, M.; Schwechheimer, C.; The Evolutionarily Conserved TOUGH Protein Is Required for Proper Development of Arabidopsis thaliana Plant Cell 17, 2473-2485, (2005) DOI: 10.1105/tpc.105.031302

In this study, we characterize the evolutionarily conserved TOUGH (TGH) protein as a novel regulator required for Arabidopsis thaliana development. We initially identified TGH as a yeast two-hybrid system interactor of the transcription initiation factor TATA-box binding protein 2. TGH has apparent orthologs in all eukaryotic model organisms with the exception of the budding yeast Saccharomyces cerevisiae. TGH contains domains with strong similarity to G-patch and SWAP domains, protein domains that are characteristic of RNA binding and processing proteins. Furthermore, TGH colocalizes with the splicing regulator SRp34 to subnuclear particles. We therefore propose that TGH plays a role in RNA binding or processing. Arabidopsis tgh mutants display developmental defects, including reduced plant height, polycotyly, and reduced vascularization. We found TGH expression to be increased in the amp1-1 mutant, which is similar to tgh mutants with respect to polycotyly and defects in vascular development. Interestingly, we observed a strong genetic interaction between TGH and AMP1 in that tgh-1 amp1-1 double mutants are extremely dwarfed and severely affected in plant development in general and vascular development in particular when compared with the single mutants.
IPB Mainnav Search