zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Bochnia, M.; Scheidemann, W.; Ziegler, J.; Sander, J.; Vollstedt, S.; Glatter, M.; Janzen, N.; Terhardt, M.; Zeyner, A. Predictive value of hypoglycin A and methylencyclopropylacetic acid conjugates in a horse with atypical myopathy in comparison to its cograzing partners Equine Vet Educ 30, 24-28, (2018) DOI: 10.1111/eve.12596

Hypoglycin A (HGA) was detected in blood and urine of a horse suffering from atypical myopathy (AM; Day 2, serum, 8290 μg/l; urine: Day 1, 574, Day 2, 742 μg/l) and in its cograzing partners with a high variability (46–1570 μg/l serum). Over the period of disease, the level of the toxic metabolites (methylencyclopropylacetic acid [MCPA]-conjugates) increased in body fluids of the AM horse (MCPA-carnitine: Day 2, 0.246, Day 3, 0.581 μmol/l serum; MCPA-carnitine: Day 2, 0.621, Day 3, 0.884 μmol/mmol creatinine in urine) and HGA decreased rapidly (Day 3, 2430 μg/l serum). In cograzing horses MCPA-conjugates were not detected. HGA in seeds ranged from 268 to 367 μg/g. Although HGA was present in body fluids of healthy cograzing horses, MCPA-conjugates were not detectable, in contrast to the AM horse. Therefore, increasing concentrations of MCPA-conjugates are supposed to be linked with the onset of AM and both parameters seem to indicate the clinical stage of disease. However, detection of HGA in body fluids of cograzing horses might be a promising step in preventing the disease.
Publikation

Wasternack, C. How Jasmonates Earned their Laurels: Past and Present Journal of Plant Growth Regulation 34 (4), 761-794, (2015) DOI: 10.1007/s00344-015-9526-5

The histories of research regarding all plant hormones are similar. Identification and structural elucidation have been followed by analyses of their biosynthesis, distributions, signaling cascades, roles in developmental or stress response programs, and crosstalk. Jasmonic acid (JA) and its derivatives comprise a group of plant hormones that were discovered recently, compared to auxin, abscisic acid, cytokinins, gibberellic acid, and ethylene. Nevertheless, there have been tremendous advances in JA research, following the general progression outlined above and parallel efforts focused on several other “new” plant hormones (brassinosteroids, salicylate, and strigolactones). This review focuses on historical aspects of the identification of jasmonates, and characterization of their biosynthesis, distribution, perception, signaling pathways, crosstalk with other hormones and roles in plant stress responses and development. The aim is to illustrate how our present knowledge on jasmonates was generated and how that influences current efforts to extend our knowledge.
Publikation

Abel, S. Phosphate sensing in root development Curr Opin Plant Biol 14, 303-309, (2011) DOI: 10.1016/j.pbi.2011.04.007

Phosphate (Pi) and its anhydrides constitute major nodes in metabolism. Thus, plant performance depends directly on Pi nutrition. Inadequate Pi availability in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi usage and acquisition. The sensory mechanisms that monitor environmental Pi and transmit the nutritional signal to adjust root development have increasingly come into focus. Recent transcriptomic analyses and genetic approaches have highlighted complex antagonistic interactions between external Pi and Fe bioavailability and have implicated the stem cell niche as a target of Pi sensing to regulate root meristem activity.
Publikation

Quint, M.; Gray, W.M. Auxin signaling Curr Opin Plant Biol 9, 448-453, (2006) DOI: 10.1016/j.pbi.2006.07.006

Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins also function as auxin receptors, a potentially complete, and surprisingly simple, signaling pathway from perception to transcriptional response is now before us. However, understanding how this seemingly simple pathway controls the myriad of specific auxin responses remains a daunting challenge, and compelling evidence exists for SCFTIR1/AFB-independent auxin signaling pathways.
Publikation

Wasternack, C.; Stenzel, I.; Hause, B.; Hause, G.; Kutter, C.; Maucher, H.; Neumerkel, J.; Feussner, I.; Miersch, O. The wound response in tomato - Role of jasmonic acid J. Plant Physiol 163, 297-306 , (2006) DOI: 10.1016/j.jplph.2005.10.014

0
Publikation

Abel, S.; Savchenko, T.; Levy, M. Genome-wide comparative analysis of the <em>IQD</em> gene families in <em>Arabidopsis thaliana</em> and Oryza sativa BMC Evolutionary Biology 5, 72 (1-25), (2005)

We identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (~10.3) and frequency of serine residues (~11%). We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants. Comparative phylogenetic analyses indicate that the major IQD gene lineages originated before the monocot-eudicot divergence. The extant IQD loci in Arabidopsis primarily resulted from segmental duplication and reflect preferential retention of paralogous genes, which is characteristic for proteins with regulatory functions. Interaction of IQD1 and IQD20 with calmodulin and the presence of predicted calmodulin binding sites in all IQD family members suggest that IQD proteins are a new class of calmodulin targets. The basic isoelectric point of IQD proteins and their frequently predicted nuclear localization suggest that IQD proteins link calcium signaling pathways to the regulation of gene expression. Our comparative genomics analysis of IQD genes and encoded proteins in two model plant species provides the first step towards the functional dissection of this emerging family of putative calmodulin targets.
IPB Mainnav Search