zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 11.

Preprints

Brunoni, F.; Široká, J.; Mik, V.; Pospíšil, T.; Kralová, M.; Ament, A.; Pernisová, M.; Karady, M.; Htitich, M.; Ueda, M.; Floková, K.; Wasternack, C.; Strnad, M.; Novák, O.; Conjugation ofcis-OPDA with amino acids is a conserved pathway affectingcis-OPDA homeostasis upon stress responses (2023) DOI: 10.1101/2023.07.18.549545

Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) has been reported to act independently of the COI1-mediated JA signaling in several stress-induced and developmental processes. However, its means of perception and metabolism are only partially understood. Furthermore, cis-OPDA, but not JA, occurs in non-vascular plant species, such as bryophytes, exhibiting specific functions in defense and development. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected in wounded leaves of flowering plants, opening up to the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp in response to biotic and abiotic stress in Arabidopsis. The newly identified OPDA-amino acid conjugates show cis-OPDA-related plant responses in a JAR1-dependent manner. We also discovered that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are regulated by members of the amidosynthetase GH3 and the amidohydrolase ILR1/ILL families. Finally, we found that the cis-OPDA conjugative pathway already functions in non-vascular plants and gymnosperms. Thus, one level of regulation by which plants modulate cis-OPDA homeostasis is the synthesis and hydrolysis of OPDA-amino acid conjugates, which temporarily store cis-OPDA in stress responses.
Preprints

Bao, Z.; Guo, Y.; Deng, Y.; Zang, J.; Zhang, J.; Ouyang, B.; Qu, X.; Bürstenbinder, K.; Wang, P.; The microtubule-associated protein SlMAP70 interacts with SlIQD21 and regulates fruit shape formation in tomato (2022) DOI: 10.1101/2022.08.08.503161

The shape of tomato fruits is closely correlated to microtubule organization and the activity of microtubule associated proteins (MAP), but insights into the mechanism from a cell biology perspective are still largely elusive. Analysis of tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs are highly expressed during fruit development. Among these, several members of the plant-specific MAP70 family are preferably expressed at the initiation stage of fruit development. Transgenic tomato lines overexpressing SlMAP70 produced elongated fruits that show reduced cell circularity and microtubule anisotropy, while SlMAP70 loss-of-function mutant showed an opposite effect with flatter fruits. Microtubule anisotropy of fruit endodermis cells exhibited dramatic rearrangement during tomato fruit development, and SlMAP70-1 is likely implicated in cortical microtubule organization and fruit elongation throughout this stage by interacting with SUN10/SlIQD21a. The expression of SlMAP70 (or co-expression of SlMAP70 and SUN10/SlIQD21a) induces microtubule stabilization and prevents its dynamic rearrangement, both activities are essential for fruit shape establishment after anthesis. Together, our results identify SlMAP70 as a novel regulator of fruit elongation, and demonstrate that manipulating microtubule stability and organization at the early fruit developmental stage has a strong impact on fruit shape.
Bücher und Buchkapitel

Weichert, H.; Maucher, H.; Hornung, E.; Wasternack, C.; Feussner, I.; Shift in Fatty Acid and Oxylipin Pattern of Tomato Leaves Following Overexpression of the Allene Oxide Cyclase 275-278, (2003) DOI: 10.1007/978-94-017-0159-4_64

Polyunsaturated fatty acids (PUFAs) are a source of numerous oxidation products, the oxylipins. In leaves, α-linolenic acid (α-LeA) is the preferential substrate for lipid peroxidation reactions. This reaction may be catalyzed either by a 9-lipoxygenase (9-LOX) or by a 13-LOX and oxygen is inserted regioselectively as well as stereospecifically leading to formation of 13S- or 9S-hydroperoxy octadecatrienoic acid (13-/9-HPOT; Brash, 1999). At least, seven different enzyme families or reaction branches within the LOX pathway can use these HPOTs or other hydroperoxy PUFAs leading to (i) keto-PUFAs (LOX); (ii) epoxy hydroxy-PUFAs (epoxy alcohol synthase, EAS); (iii) octadecanoids and jasmonates (allene oxide synthase, AOS); (iv) leaf aldehydes and leaf alcohols (hydroperoxide lyase, HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs (divinyl ether synthase, DES); and (vii) epoxy- or dihydrodiol-PUFAs (peroxygenase, PDX; Fig. 1; Feussner and Wasternack, 2002).
Bücher und Buchkapitel

Kramell, R.; Porzel, A.; Miersch, O.; Schneider, G.; Characterization of Isoleucine Conjugates of Cucurbic Acid Isomers by Reversed-Phase and Chiral High-Performance Liquid Chromatography 77-78, (1998)

0
Bücher und Buchkapitel

Kohlmann, M.; Kuntzsch, A.; Wasternack, C.; Feussner, I.; Effect of Jasmonic Acid Methyl Ester on Enzymes of Lipoxygenase Pathway in Barley Leaves 339-340, (1998)

0
Bücher und Buchkapitel

Feussner, I.; Balkenhohl, T. J.; Porzel, A.; Kühn, H.; Wasternack, C.; Structural Elucidation of Oxygenated Triacylglycerols in Cucumber and Sunflower Cotyledons 57-58, (1998)

0
Bücher und Buchkapitel

Feussner, I.; Blée, E.; Weichert, H.; Rousset, C.; Wasternack, C.; Fatty Acid Catabolism at the Lipid Body Membrane of Germinating Cucumber Cotyledons 311-313, (1998)

0
Bücher und Buchkapitel

Balkenhohl, T.; Kühn, H.; Wasternack, C.; Feussner, I.; A Lipase Specific for Esterified Oxygenated Polyenoic Fatty Acids in Lipid Bodies of Cucumber Cotyledons 320-322, (1998)

0
Bücher und Buchkapitel

Bachmann, A.; Kohlmann, M.; Wasternack, C.; Feussner, I.; Oxylipins in Sorbitol-Stressed Barley Leaf Segments 288-290, (1998)

0
Bücher und Buchkapitel

Ziegler, J.; Hamberg, M.; Miersch, O.; Allene Oxide Cyclase from Corn: Partial Purification and Characterization 99-101, (1997) DOI: 10.1007/978-94-017-2662-7_32

In plants, the oxylipin pathway gives rise to several oxygenated fatty acid derivatives such as hydroxy- and keto fatty acids as well as volatile aldehydes and cyclic compounds, which are, in part, physiologically active [1]. Among these, jasmonic acid is discussed as signalling molecule during several stress responses, wounding, senescense and plant pathogen interactions [2].
IPB Mainnav Search