zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Publikation

Wasternack, C. A plant's balance of growth and defense - revisited New Phytol 215, 1291-1294, (2017) DOI: 10.1111/nph.14720

This article is a Commentary on Major et al., 215: 1533–1547.
Publikation

Wasternack, C. The Trojan horse coronatine: the COI1–JAZ2–MYC2,3,4–ANAC019,055,072 module in stomata dynamics upon bacterial infection. New Phytol 213, 972-975, (2017) DOI: 10.1111/nph.14417

Coronatine (COR) is a phytotoxin produced by a plasmid-encoded operon of genes in several strains of Pseudomonas syringae (Bender et al., 1999). It is a mimic of the defense-associated phytohormone jasmonic acid isoleucine and delivered by the phytopathogenic bacterium to gain access to host plants through stomatal entry and to repress a specific sector of plant immunity. In this issue of New Phytologist (pp. 1378–1392) Gimenez-Ibanez et al. reveal exciting insights into the transcriptional regulation of COR/jasmonic acid isoleucine-governed transcriptional networks modulating stomatal aperture during bacterial invasion.
IPB Mainnav Search