zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Kahsay, B. N.; Ziegler, J.; Imming, P.; Gebre-Mariam, T.; Neubert, R. H. H.; Moeller, L.; Free amino acid contents of selected Ethiopian plant and fungi species: a search for alternative natural free amino acid sources for cosmeceutical applications Amino Acids 53, 1105-1122, (2021) DOI: 10.1007/s00726-021-03008-5

Free amino acids (FAAs), the major constituents of the natural moisturizing factor (NMF), are very important for maintaining the moisture balance of human skin and their deficiency results in dry skin conditions. There is a great interest in the identification and use of nature-based sources of these molecules for such cosmeceutical applications. The objective of the present study was, therefore, to investigate the FAA contents of selected Ethiopian plant and fungi species; and select the best sources so as to use them for the stated purpose. About 59 different plant species and oyster mushroom were included in the study and the concentrations of 27 FAAs were analyzed. Each sample was collected, lyophilized, extracted using aqueous solvent, derivatized with Fluorenylmethoxycarbonyl chloride (Fmoc-Cl) prior to solid-phase extraction and quantified using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC-ESI–MS/MS) system. All the 27 FAAs were detected in most of the samples. The dominant FAAs that are part of the NMF were found at sufficiently high concentration in the mushroom and some of the plants. This indicates that FAAs that could be included in the preparations for the management of dry skin condition can be obtained from a single natural resource and the use of these resources for the specified purpose have both economic and therapeutic advantage in addition to fulfilling customer needs.
Publikation

Ziegler, J.; Abel, S.; Analysis of amino acids by HPLC/electrospray negative ion tandem mass spectrometry using 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) derivatization Amino Acids 46, 2799-2808, (2014) DOI: 10.1007/s00726-014-1837-5

A new method for the determination of amino acids is presented. It combines established methods for the derivatization of primary and secondary amino groups with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) with the subsequent amino acid specific detection of the derivatives by LC–ESI–MS/MS using multiple reaction monitoring (MRM). The derivatization proceeds within 5 min, and the resulting amino acid derivatives can be rapidly purified from matrix by solid-phase extraction (SPE) on HR-X resin and separated by reversed-phase HPLC. The Fmoc derivatives yield several amino acid specific fragment ions which opened the possibility to select amino acid specific MRM transitions. The method was applied to all 20 proteinogenic amino acids, and the quantification was performed using l-norvaline as standard. A limit of detection as low as 1 fmol/µl with a linear range of up to 125 pmol/µl could be obtained. Intraday and interday precisions were lower than 10 % relative standard deviations for most of the amino acids. Quantification using l-norvaline as internal standard gave very similar results compared to the quantification using deuterated amino acid as internal standards. Using this protocol, it was possible to record the amino acid profiles of only a single root from Arabidopsis thaliana seedlings and to compare it with the amino acid profiles of 20 dissected root meristems (200 μm).
Publikation

Kogel, K.-H.; Ortel, B.; Jarosch, B.; Atzorn, R.; Schiffer, R.; Wasternack, C.; Resistance in barley against the powdery mildew fungus (Erysiphe graminis f.sp.hordei) is not associated with enhanced levels of endogenous jasmonates Eur. J. Plant Pathol. 101, 319-332, (1995) DOI: 10.1007/BF01874788

Onset of acquired resistance of barley (Hordeum vulgare) chemically induced by 2,6-dichloroisonicotinic acid (DCINA) correlated with the accumulation of mRNA homologous to cDNA pHvJ256 which codes for a soluble leaf-thionin with a Mr. of 6 kDa [Wasternacket al., 1994a]. In the present work, we extend this finding by showing that the thionin transcript also accumulated following treatment of barley with the resistance-inducing compounds 3,5-dichlorosalicylic acid (DCSA), salicylic acid (SA), and an extract fromBacillus subtilis. The polypeptide showed antifungal activity against the biotrophic cereal pathogensErysiphe graminis f.sp.hordei andPuccinia graminis f.sp.tritici which may indicate a possible role in the mechanism of acquired resistance in barley. A thionin transcript hybridizing to pHvJ256 accumulated also in response to application of jasmonates, or treatments that elevated endogenous amounts of the plant growth substance, pointing to the possibility that signaling mediating defense responses in barley involves jasmonates. However, a topical spray application of jasmonic acid (JA) or jasmonate methyl ester (JM) did not protect barley leaves against infection byE. graminis. Performing a kinetic analysis by an enzyme immunoassay specific for (−)-JA, (−)-JM, and its amino acid conjugates, accumulation of jasmonates was detected in osmotically stressed barley but not at the onset of chemically induced or genetically based resistance governed by the powdery mildew resistance genesMlg, Mla 12, ormlo 5. Furthermore, the jasmonate-inducible proteins JIP-23 and JIP-60 were strongly induced following JM- but not DCINA-treatment or inoculation withE. graminis. Hence, in barley, no indications were found in favour for the previously proposed model of a lipid-based signaling pathway via jasmonates mediating expression of resistance in plants against pathogens.
IPB Mainnav Search