zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Ibañez, C.; Delker, C.; Martinez, C.; Bürstenbinder, K.; Janitza, P.; Lippmann, R.; Ludwig, W.; Sun, H.; James, G. V.; Klecker, M.; Grossjohann, A.; Schneeberger, K.; Prat, S.; Quint, M. Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1 Curr Biol 28, 303-310.e3, (2018) DOI: 10.1016/j.cub.2017.11.077

Thermomorphogenesis is defined as the suite of morphological changes that together are likely to contribute to adaptive growth acclimation to usually elevated ambient temperature [ 1, 2 ]. While many details of warmth-induced signal transduction are still elusive, parallels to light signaling recently became obvious (reviewed in [ 3 ]). It involves photoreceptors that can also sense changes in ambient temperature [ 3–5 ] and act, for example, by repressing protein activity of the central integrator of temperature information PHYTOCHROME-INTERACTING FACTOR 4 (PIF4 [ 6 ]). In addition, PIF4 transcript accumulation is tightly controlled by the evening complex member EARLY FLOWERING 3 [ 7, 8 ]. According to the current understanding, PIF4 activates growth-promoting genes directly but also via inducing auxin biosynthesis and signaling, resulting in cell elongation. Based on a mutagenesis screen in the model plant Arabidopsis thaliana for mutants with defects in temperature-induced hypocotyl elongation, we show here that both PIF4 and auxin function depend on brassinosteroids. Genetic and pharmacological analyses place brassinosteroids downstream of PIF4 and auxin. We found that brassinosteroids act via the transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), which accumulates in the nucleus at high temperature, where it induces expression of growth-promoting genes. Furthermore, we show that at elevated temperature BZR1 binds to the promoter of PIF4, inducing its expression. These findings suggest that BZR1 functions in an amplifying feedforward loop involved in PIF4 activation. Although numerous negative regulators of PIF4 have been described, we identify BZR1 here as a true temperature-dependent positive regulator of PIF4, acting as a major growth coordinator.
Publikation

Rekik, I.; Drira, N.; Grubb, C. D.; Elleuch, A. Molecular characterization and evolution studies of a SERK like gene transcriptionally induced during somatic embryogenesis in Phoenix Dactylifera L v Deglet Nour Genetika 47, 323-337, (2015) DOI: 10.2298/GENSR1501323R

A somatic embryogenesis receptor kinase like (SERKL) cDNA, designated PhSERKL, was isolated from date palm (Phoenix Dactylifera L) using RACE PCR. PhSERKL protein shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, a transmembrane domain, and kinase domains. Phylogenetic analyses using PHYLIP and Notung 2.7 programs suggest that the SERK proteins of some plant species resulted from relatively ancient duplication events. We predict an ancestor protein of monocots and dicots SERK using FASTML program. Somatic embryogenic cultures of date palm were established following transfer of callus cultures to medium containing 2, 4-dichlorophenoxyacetic acid. The role of PhSERKL gene during establishment of somatic embryogenesis in culture was investigated using quantitative real-time PCR. PhSERKL gene was highly expressed during embryogenic competence acquisition and globular embryo formation in culture. Overall, levels of expression of PhSERKL gene were lower in nonembryogenic tissues and organs than in embryogenic callus.
Publikation

Sharma, V.K.; Monostori, T.; Hause, B.; Maucher, H.; Göbel, C.; Hornung, E.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R.R.; Schulze, J. Genetic transformation of barley to modify expression of a 13-lipoxygenase Acta Biol. Szeged 49, 33-34 , (2005)

Immature scutella of barley were transformed with cDNA coding for a 13-li-poxygenase of barley (LOX-100) via particle bombardment. Regenerated plants were tested by PAT-assay, Western-analysis and PCR-screening. Immunocytochemical assay of T0 plants showed expression of the LOX cDNA both in the chloroplasts and in the cytosol, depending on the presence of the chloroplast signal peptide sequences in the cDNA. A few transgenic plants containing higher amounts of LOX-derived products have been found. These are the candidates for further analysis concerning pathogen resistance.
Publikation

Quint, M.; Melchinger, A.E.; Dussle, C.M.; Lübberstedt, T. Breeding for virus resistance in maize Genetika 32, 283-291, (2000)

0
IPB Mainnav Search