zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Kopycki, J.; Wieduwild, E.; Kohlschmidt, J.; Brandt, W.; Stepanova, A.N.; Alonso, J.M.; Pedras, M.S.; Abel, S.; Grubb, C.D. Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition Biochem J 450, 37-46, (2013) DOI: 10.1042/BJ20121403

Plant genomes encode numerous small molecule glycosyltransferases which modulate the solubility, activity, immunogenicity and/or reactivity of hormones, xenobiotics and natural products. The products of these enzymes can accumulate to very high concentrations, yet somehow avoid inhibiting their own biosynthesis. Glucosyltransferase UGT74B1 (UDP-glycosyltransferase 74B1) catalyses the penultimate step in the core biosynthetic pathway of glucosinolates, a group of natural products with important functions in plant defence against pests and pathogens. We found that mutation of the highly conserved Ser284 to leucine [wei9-1 (weak ethylene insensitive)] caused only very mild morphological and metabolic phenotypes, in dramatic contrast with knockout mutants, indicating that steady state glucosinolate levels are actively regulated even in unchallenged plants. Analysis of the effects of the mutation via a structural modelling approach indicated that the affected serine interacts directly with UDP-glucose, but also predicted alterations in acceptor substrate affinity and the kcat value, sparking an interest in the kinetic behaviour of the wild-type enzyme. Initial velocity and inhibition studies revealed that UGT74B1 is not inhibited by its glycoside product. Together with the effects of the missense mutation, these findings are most consistent with a partial rapid equilibrium ordered mechanism. This model explains the lack of product inhibition observed both in vitro and in vivo, illustrating a general mechanism whereby enzymes can continue to function even at very high product/precursor ratios.
Publikation

Calderón Villalobos, L.I.; Nill, C.; Marrocco, K.; Kretsch, T.; Schwechheimer, C. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress Gene 392(1-2), 106-116, (2007) DOI: 10.1016/j.gene.2006.11.016

In eukaryotes, E3 ubiquitin ligases (E3s) mediate the ubiquitylation of proteins that are destined for degradation by the ubiquitin-proteasome system. In SKP1/CDC53/F-box protein (SCF)-type E3 complexes, the interchangeable F-box protein confers specificity to the E3 ligase through direct physical interactions with the degradation substrate. The vast majority of the approximately 700 F-box proteins from the plant model organism Arabidopsis thaliana remain to be characterized. Here, we investigate the previously uncharacterized and evolutionarily conserved Arabidopsis F-box protein 7 (AtFBP7), which is encoded by a unique gene in Arabidopsis (At1g21760). Several apparent fbp7 loss-of-function alleles do not have an obvious phenotype. AtFBP7 is ubiquitously expressed and its expression is induced after cold and heat stress. When following up on a reported co-purification of the eukaryotic elongation factor-2 (eEF-2) with YLR097c, the apparent budding yeast orthologue of AtFBP7, we discovered a general defect in protein biosynthesis after cold and heat stress in fbp7 mutants. Thus, our findings suggest that AtFBP7 is required for protein synthesis during temperature stress.
Publikation

Biondi, E.; Branciamore, S.; Fusi, L.; Gago, S.; Gallori, E. Catalytic activity of hammerhead ribozymes in a clay mineral environment: Implications for the RNA world. Gene 389, 10-18, (2007) DOI: 10.1016/j.gene.2006.09.002

0
Publikation

Sharma, V.K.; Monostori, T.; Hause, B.; Maucher, H.; Göbel, C.; Hornung, E.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R.R.; Schulze, J. Genetic transformation of barley to modify expression of a 13-lipoxygenase Acta Biol. Szeged 49, 33-34 , (2005)

Immature scutella of barley were transformed with cDNA coding for a 13-li-poxygenase of barley (LOX-100) via particle bombardment. Regenerated plants were tested by PAT-assay, Western-analysis and PCR-screening. Immunocytochemical assay of T0 plants showed expression of the LOX cDNA both in the chloroplasts and in the cytosol, depending on the presence of the chloroplast signal peptide sequences in the cDNA. A few transgenic plants containing higher amounts of LOX-derived products have been found. These are the candidates for further analysis concerning pathogen resistance.
Publikation

Feussner, I.; Fritz, I.G.; Hause, B.; Ullrich, W.R.; Wasternack, C. Induction of a new lipoxygenase form in cucumber leaves by salicylic acid or 2,6-dichloroisonicotinic acid Bot. Acta 110, 101-108, (1997) DOI: 10.1111/j.1438-8677.1997.tb00616.x

Changes in lipoxygenase (LOX) protein pattern and/or activity were investigated in relation to acquired resistance of cucumber (Cucumis sativus L.) leaves against two powdery mildews, Sphaerotheca fuliginea (Schlecht) Salmon and Erysiphe cichoracearum DC et Merat. Acquired resistance was established by spraying leaves with salicylic acid (SA) or 2,6-dichloroisonicotinic acid (INA) and estimated in whole plants by infested leaf area compared to control plants. SA was more effective than INA. According to Western blots, untreated cucumber leaves contained a 97 kDa LOX form, which remained unchanged for up to 48 h after pathogen inoculation. Upon treatment with SA alone for 24 h or with INA plus pathogen, an additional 95 kDa LOX form appeared which had an isoelectric point in the alkaline range. For the induction of this form, a threshold concentration of 1 mM SA was required, higher SA concentrations did not change LOX-95 expression which remained similar between 24 h and 96 h but further increased upon mildew inoculation. Phloem exudates contained only the LOX-97 form, in intercellular washing fluid no LOX was detected. dichloroisonicotinic localization revealed LOX protein in the cytosol of the mesophyll cells without differences between the forms.
IPB Mainnav Search