zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Bücher und Buchkapitel

Parniske, M.; Ried, M. K.; Wahrnehmung und Interpretation symbiontischer Signale durch Pflanzen und ihre bakteriellen Partner (Deigele, C., ed.). 105-116, (2016)

Mutualistic symbioses between plant roots and microorganisms can reduce the demand for chemical fertilizers in agriculture. Most crops are able to establish arbuscular mycorrhiza (AM) symbiosis with fungi to take up phosphate more efficiently. A second symbiosis, nitrogen-fixing root nodule symbiosis, supersedes energy-intensive nitrogen fertilization: Legumes such as peas, clover and soybeans take up rhizobia – special bacteria that are capable of converting atmospheric nitrogen into ammonium – into their root cells. Plant root cells perceive rhizobia and AM fungi via very similar signaling molecules (N-acetylglucosamine tetra- or pentamers), even though the resultant developmental processes differ strongly. Interestingly, N-acetylglucosamine containing signals including fungal chitin- and bacterial peptidoglycan-fragments from their cell walls, also play a role in the recognition of pathogenic microorganisms.Despite the intrinsic sustainability potential of the nitrogen-fixing root nodule symbiosis, too much of a good thing, however, has led to global problems: The massive increase in global meat production is largely based on soybean. Large scale soybean monoculture destroyed ecosystems in South America. Large scale animal production results in excessive methane and nitrogen release into the environment, which causes climate change and death zones in marine ecosystems, respectively. This calls for a considerable reduction in meat consumption.
Publikation

Flores, R.; Delgado, S.; Gas, M.-E.; Carbonell, A.; Molina, D.; Gago, S.; De la Peña, M.; Viroids: the minimal non-coding RNAs with autonomous replication FEBS Lett. 567, 42-48, (2004) DOI: 10.1016/j.febslet.2004.03.118

Viroids are small (246–401 nucleotides), non‐coding, circular RNAs able to replicate autonomously in certain plants. Viroids are classified into the families Pospiviroidae and Avsunviroidae , whose members replicate in the nucleus and chloroplast, respectively. Replication occurs by an RNA‐based rolling‐circle mechanism in three steps: (1) synthesis of longer‐than‐unit strands catalyzed by host DNA‐dependent RNA polymerases forced to transcribe RNA templates, (2) processing to unit‐length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3) circularization either through an RNA ligase or autocatalytically. Disease induction might result from the accumulation of viroid‐specific small interfering RNAs that, via RNA silencing, could interfere with normal developmental pathways.
Bücher und Buchkapitel

Stenzel, I.; Hause, B.; Feussner, I.; Wasternack, C.; Transcriptional Activation of Jasmonate Biosynthesis Enzymes is not Reflected at Protein Level 267-270, (2003) DOI: 10.1007/978-94-017-0159-4_62

Jasmonic acid (JA) and its precursor 12-oxo phytodienoic acid (OPDA) are lipid-derived signals in plant stress responses and development (Wasternack and Hause, 2002). Within the wound-response pathway of tomato, a local response of expression of defense genes such as the proteinase inhibitor 2 gene (PIN2) is preceded by a rise in JA (Herde et al., 1996; Howe et al., 1996) and ethylene (O’Donnell et al., 1996). Mutants affected in JA biosynthesis such as defl (Howe et al., 1996) or spr-2 (Li et al., 2002) clearly indicated that JA biosynthesis is an ultimate part of wound signaling. It is less understood, however, how the rise in JA is regulated.
Publikation

Bohlmann, H.; Vignutelli, A.; Hilpert, B.; Miersch, O.; Wasternack, C.; Apel, K.; Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway FEBS Lett. 437, 281-286, (1998) DOI: 10.1016/S0014-5793(98)01251-4

In seedlings of Arabidopsis thaliana the thionin gene Thi2.1 is inducible by methyl jasmonate, wounding, silver nitrate, coronatine, and sorbitol. We have used a biochemical and genetic approach to test the signal transduction of these different inducers. Both exogenously applied jasmonates and jasmonates produced endogenously upon stress induction, lead to GUS expression in a Thi2.1 promoter-uidA transgenic line. No GUS expression was observed in a coi1 mutant background which lacks jasmonate perception whereas methyl jasmonate and coronatine but not the other inducers were able to overcome the block in jasmonic acid production in a fad3-2 fad7-2 fad8 mutant background. Our results show conclusively that all these inducers regulate Thi2-1 gene expression via the octadecanoid pathway.
IPB Mainnav Search