zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Benno Parthier und die Jasmonatforschung in Halle (Hacker, J., ed.). Nova Acta Leopoldina Supplementum Nr. 28, 29-38, (2013)

0
Publikation

Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C.; Jasmonate Biosynthesis in Arabidopsis thaliana - Enzymes, Products, Regulation Plant Biol. 8, 297-306, (2006) DOI: 10.1055/s-2006-923935

Among the plant hormones jasmonic acid and related derivatives are known to mediate stress responses and several developmental processes. Biosynthesis, regulation, and metabolism of jasmonic acid in Arabidopsis thaliana are reviewed, including properties of mutants of jasmonate biosynthesis. The individual signalling properties of several jasmonates are described.
Publikation

Bücking, H.; Förster, H.; Stenzel, I.; Miersch, O.; Hause, B.; Applied jasmonates accumulate extracellularly in tomato, but intracellularly in barley FEBS Lett. 562, 45-50, (2004) DOI: 10.1016/S0014-5793(04)00178-4

Jasmonic acid (JA) and its derivatives are well‐characterized signaling molecules in plant defense and development, but the site of their localization within plant tissue is entirely unknown. To address the question whether applied JA accumulates extracellularly or intracellularly, leaves of tomato and barley were fed with 14C‐labeled JA and the label was localized in cryofixed and lyophilized leaf tissues by microautoradiography. In tomato the radioactivity was detectable within the apoplast, but no label was found within the mesophyll cells. By contrast, in barley leaf tissues, radioactivity was detected within the mesophyll cells suggesting a cellular uptake of exogenously applied JA. JA, applied to leaves of both plants as in the labeling experiments, led in all leaf cells to the expression of JA‐inducible genes indicating that the perception is completed by JA signal transduction.
Publikation

Hause, B.; Hertel, S. C.; Klaus, D.; Wasternack, C.; Cultivar-Specific Expression of the Jasmonate-Induced Protein of 23 kDa (JIP-23) Occurs in Hordeum vulgare L. by Jasmonates but not During Seed Germination Plant Biol. 1, 83-89, (1999) DOI: 10.1111/j.1438-8677.1999.tb00712.x

Treatment of barley leaf segments with jasmonic acid methyl ester (JM) leads to the accumulation of a set of newly formed abundant proteins. Among them, the most abun dant protein exhibits a molecular mass of 23 kDa (JIP‐23). Here, data are presented on the occurrence and expression of the lIP‐23 genes in different cultivars of Hordeum vulgare . Southern blot analysis of 80 cultivars revealed the occurrence of 2 to 4 genes coding for JIP‐23 in all cultivars. By means of Northern blot and immunoblot analysis it is shown that some cultivars lack the ex pression of jip‐23 upon treatment of primary leaves with JM as well as upon stress performed by incubation with 1 M sorbitol solution. During germination, however, all tested cultivars ex hibited developmental expression of jip‐23 . The results are dis cussed in terms of possible functions of JIP‐23 in barley.
Publikation

Churin, J.; Hause, B.; Feussner, I.; Maucher, H. P.; Feussner, K.; Börner, T.; Wasternack, C.; Cloning and expression of a new cDNA from monocotyledonous plants coding for a diadenosine 5′,5′′′-P1,P4-tetraphosphate hydrolase from barley (Hordeum vulgare) FEBS Lett. 431, 481-485, (1998) DOI: 10.1016/S0014-5793(98)00819-9

From a cDNA library generated from mRNA of white leaf tissues of the ribosome‐deficient mutant ‘albostrians' of barley (Hordeum vulgare cv. Haisa) a cDNA was isolated carrying 54.2% identity to a recently published cDNA which codes for the diadenosine‐5′,5′′′‐P1,P4‐tetraphosphate (Ap4A) hydrolase of Lupinus angustifolius (Maksel et al. (1998) Biochem. J. 329, 313–319), and 69% identity to four partial peptide sequences of Ap4A hydrolase of tomato. Overexpression in Escherichia coli revealed a protein of about 19 kDa, which exhibited Ap4A hydrolase activity and cross‐reactivity with an antibody raised against a purified tomato Ap4A hydrolase (Feussner et al. (1996) Z. Naturforsch. 51c, 477–486). Expression studies showed an mRNA accumulation in all organs of a barley seedling. Possible functions of Ap4A hydrolase in plants will be discussed.
Publikation

Kramell, R.; Miersch, O.; Hause, B.; Ortel, B.; Parthier, B.; Wasternack, C.; Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves FEBS Lett. 414, 197-202, (1997) DOI: 10.1016/S0014-5793(97)01005-3

Leaves of barley (Hordeum vulgare L. cv. Salome ) treated with jasmonic acid (JA), its methyl ester (JM), or its amino acid conjugates exhibit up‐regulation of specific genes and down‐regulation of house‐keeping genes. This transcriptional regulation exhibits several specificities. (i) The (−)‐enantiomers are more active, and conjugates are mainly active if they carry an l ‐amino acid moiety. (ii) The various JA‐responsive genes respond differentially to enantiomeric and chiralic forms. (iii) Both JA and its amino acid conjugates exhibiting no or negligible interconversion induce/repress genes.
IPB Mainnav Search