zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 9 von 9.

Bücher und Buchkapitel

Dorka, R.; Miersch, O.; Hause, B.; Weik, P.; Wasternack, C.; Chronobiologische Phänomene und Jasmonatgehalt bei Viscum album L. 49-66, (2009)

0
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Stenzel, I.; Goetz, S.; Feussner, I.; Miersch, O.; Jasmonate signaling in tomato – The input of tissue-specific occurrence of allene oxide cyclase and JA metabolites (Benning C., Ollrogge, J.). 107-111, (2007)

0
Bücher und Buchkapitel

Weichert, H.; Maucher, H.; Hornung, E.; Wasternack, C.; Feussner, I.; Shift in Fatty Acid and Oxylipin Pattern of Tomato Leaves Following Overexpression of the Allene Oxide Cyclase 275-278, (2003) DOI: 10.1007/978-94-017-0159-4_64

Polyunsaturated fatty acids (PUFAs) are a source of numerous oxidation products, the oxylipins. In leaves, α-linolenic acid (α-LeA) is the preferential substrate for lipid peroxidation reactions. This reaction may be catalyzed either by a 9-lipoxygenase (9-LOX) or by a 13-LOX and oxygen is inserted regioselectively as well as stereospecifically leading to formation of 13S- or 9S-hydroperoxy octadecatrienoic acid (13-/9-HPOT; Brash, 1999). At least, seven different enzyme families or reaction branches within the LOX pathway can use these HPOTs or other hydroperoxy PUFAs leading to (i) keto-PUFAs (LOX); (ii) epoxy hydroxy-PUFAs (epoxy alcohol synthase, EAS); (iii) octadecanoids and jasmonates (allene oxide synthase, AOS); (iv) leaf aldehydes and leaf alcohols (hydroperoxide lyase, HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs (divinyl ether synthase, DES); and (vii) epoxy- or dihydrodiol-PUFAs (peroxygenase, PDX; Fig. 1; Feussner and Wasternack, 2002).
Bücher und Buchkapitel

Stumpe, M.; Stenzel, I.; Weichert, H.; Hause, B.; Feussner, I.; The Lipoxygenase Pathway in Mycorrhizal Roots of Medicago Truncatula 287-290, (2003) DOI: 10.1007/978-94-017-0159-4_67

Mycorrhizas are by far the most frequent occurring beneficial symbiotic interactions between plants and fungi. Species in >80% of extant plant families are capable of establishing an arbuscular mycorrhiza (AM). In relation to the development of the symbiosis the first molecular modifications are those associated with plant defense responses, which seem to be locally suppressed to levels compatible with symbiotic interaction (Gianinazzi-Pearson, 1996). AM symbiosis can, however, reduce root disease caused by several soil-borne pathogens. The mechanisms underlying this protective effect are still not well understood. In plants, products of the enzyme lipoxygenase (LOX) and the corresponding downstream enzymes, collectively named LOX pathway (Fig. 1B), are involved in wound healing, pest resistance, and signaling, or they have antimicrobial and antifungal activity (Feussner and Wasternack, 2002). The central reaction in this pathway is catalyzed by LOXs leading to formation of either 9- or 13-hydroperoxy octadeca(di/trien)oic acids (9/13-HPO(D/T); Brash, 1999). Thus LOXs may be divided into 9- and 13-LOXs (Fig. 1A). Seven different reaction branches within this pathway can use these hydroperoxy polyenoic fatty acids (PUFAs) leading to (i) keto PUFAs by a LOX; (ii) epoxy hydroxy-fatty acids by an epoxy alcohol synthase (EAS); (iii) octadecanoids and jasmonates via allene oxide synthase (AOS); (iv) leaf aldehydes and leaf alcohols via fatty acid hydroperoxide lyase (HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs via divinyl ether synthase (DES); and (vii) epoxy- or dihydrodiolPUFAs via peroxygenase (PDX; Feussner and Wasternack, 2002). AOS, HPL and DES belong to one subfamily of P450-containing enzymes, the CYP74 family (Feussner and Wasternack, 2002). Here, the involvement of this CYP74 enzyme family in mycorrhizal roots of M. truncatula during early stages of AM symbiosis formation was analyzed.
Bücher und Buchkapitel

Stenzel, I.; Hause, B.; Feussner, I.; Wasternack, C.; Transcriptional Activation of Jasmonate Biosynthesis Enzymes is not Reflected at Protein Level 267-270, (2003) DOI: 10.1007/978-94-017-0159-4_62

Jasmonic acid (JA) and its precursor 12-oxo phytodienoic acid (OPDA) are lipid-derived signals in plant stress responses and development (Wasternack and Hause, 2002). Within the wound-response pathway of tomato, a local response of expression of defense genes such as the proteinase inhibitor 2 gene (PIN2) is preceded by a rise in JA (Herde et al., 1996; Howe et al., 1996) and ethylene (O’Donnell et al., 1996). Mutants affected in JA biosynthesis such as defl (Howe et al., 1996) or spr-2 (Li et al., 2002) clearly indicated that JA biosynthesis is an ultimate part of wound signaling. It is less understood, however, how the rise in JA is regulated.
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Jasmonates and octadecanoids: Signals in plant stress responses and development Prog. Nucleic Acid Res. Mol. Biol. 72, 165-221, (2002) DOI: 10.1016/S0079-6603(02)72070-9

Plants are sessile organisms. Consequently they have to adapt constantly to fluctuations in the environment. Some of these changes involve essential factors such as nutrients, light, and water. Plants have evolved independent systems to sense nutrients such as phosphate and nitrogen. However, many of the environmental factors may reach levels which represent stress for the plant. The fluctuations can range between moderate and unfavorable, and the factors can be of biotic or abiotic origin. Among the biotic factors influencing plant life are pathogens and herbivores. In case of bacteria and fungi, symbiotic interactions such as nitrogen-fixating nodules and mycorrhiza, respectively, may be established. In case of insects, a tritrophic interaction of herbivores, carnivores, and plants may occur mutualistically or parasitically. Among the numerous abiotic factors are low temperature, frost, heat, high light conditions, ultraviolet light, darkness, oxidation stress, hypoxia, wind, touch, nutrient imbalance, salt stress, osmotic adjustment, water deficit, and desiccation.In the last decade jasmonates were recognized as being signals in plant responses to most of these biotic and abiotic factors. Signaling via jasmonates was found to occur intracellularly, and systemically as well as interorganismically. Jasmonates are a group of ubiquitously occurring plant growth regulators originally found as the major constituents in the etheric oil of jasmine, and were first suggested to play a role in senescence due to a strong senescence-promoting effect. Subsequently, numerous developmental processes were described in which jasmonates exhibited hormone-like properties. Recent knowledge is reviewed here on jasmonates and their precursors, the octadecanoids. After discussing occurrence and biosynthesis, emphasis is placed upon the signal transduction pathways in plant stress responses in which jasmonates act a signal. Finally, examples are described on the role of jasmonates in developmental processes.
Publikation

Chen, D. L.; Delatorre, C. A.; Bakker, A.; Abel, S.; Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana Planta 211, 13-22, (2000) DOI: 10.1007/s004250000271

Plants have evolved elaborate metabolic and developmental adaptations to low phosphorus availability. Biochemical responses to phosphate limitation include increased production and secretion of phosphate-acquisition proteins such as nucleases, acid phosphatases, and high-affinity phosphate transporters. However, the signal transduction pathways that sense phosphate availability and integrate the phosphate-starvation response in plants are unknown. We have devised a screen for conditional mutants in Arabidopsis thaliana (L.) Heynh. to dissect signaling of phosphate limitation. Our genetic screen is based on the facultative ability of wild-type Arabidopsis plants to metabolize exogenous DNA when inorganic phosphate is limiting. After screening 50,000 M2 seedlings, we isolated 22 confirmed mutant lines that showed severely impaired growth on medium containing DNA as the only source of phosphorus, but which recovered on medium containing soluble inorganic phosphate. Characterization of nine such mutant lines demonstrated an inability to utilize either DNA or RNA. One mutant line, psr1 (phosphate starvation response), had significantly reduced activities of phosphate-starvation-inducible isoforms of ribonuclease and acid phosphatase under phosphate-limiting conditions. The data suggest that a subset of the selected mutations impairs the expression of more than one phosphate-starvation-inducible enzyme required for utilization of exogenous nucleic acids, and may thus affect regulatory components of a Pi starvation response pathway in higher plants.
Publikation

Görschen, E.; Dunaeva, M.; Hause, B.; Reeh, I.; Wasternack, C.; Parthier, B.; Expression of the ribosome-inactivating protein JIP60 from barley in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation Planta 202, 470-478, (1997) DOI: 10.1007/s004250050151

In this paper we report the in-planta activity of the ribosome-inactivating protein JIP60, a 60-kDa jasmonate-induced protein from barley (Hordeum vulgare L.), in transgenic tobacco (Nicotiana tabacum L.) plants. All plants expressing the complete JIP60 cDNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited conspicuous and similar phenotypic alterations, such as slower growth, shorter internodes, lanceolate leaves, reduced root development, and premature senescence of leaves. Microscopic inspection of developing leaves showed a loss of residual meristems and higher degree of vacuolation of mesophyll cells as compared to the wild type. When probed with an antiserum which was immunoreactive against both the N- and the C-terminal half of JIP60, a polypeptide with a molecular mass of about 30 kDa, most probably a processed JIP60 product, could be detected. Phenotypic alterations could be correlated with the differences in the detectable amount of the JIP60 mRNA and processed JIP60 protein. The protein biosynthesis of the transformants was characterized by an increased polysome/monosome ratio but a decreased in-vivo translation activity. These findings suggest that JIP60 perturbs the translation machinery in planta. An immunohistological analysis using the JIP60 antiserum indicated that the immunoreactive polypeptide(s) are located mainly in the nucleus of transgenic tobacco leaf cells and to a minor extent in the cytoplasm.
Publikation

Feussner, I.; Hause, B.; Nellen, A.; Wasternack, C.; Kindl, H.; Lipid-body lipoxygenase is expressed in cotyledons during germination prior to other lipoxygenase forms Planta 198, 288-293, (1996) DOI: 10.1007/BF00206255

Lipid bodies are degraded during germination. Whereas some proteins, e.g. oleosins, are synthesized during the formation of lipid bodies of maturating seeds, a new set of proteins, including a specific form of lipoxygenase (LOX; EC 1.13.11.12), is detectable in lipid bodies during the stage of fat degradation in seed germination. In cotyledons of cucumber (Cucumis sativus L.) seedlings at day 4 of germination, the most conspicuous staining with anti-LOX antibodies was observed in the cytosol. At very early stages of germination, however, the LOX form present in large amounts and synthesized preferentially was the lipid-body LOX. This was demonstrated by immunocytochemical staining of cotyledons from 1-h and 24-h-old seedlings: the immunodecoration of sections of 24-h-old seedlings with anti-LOX antiserum showed label exclusively correlated with lipid bodies of around 3 μm in diameter. In accordance, the profile of LOX protein isolated from lipid bodies during various stages of germination showed a maximum at day 1. By measuring biosynthesis of the protein in vivo we demonstrated that the highest rates of synthesis of lipid-body LOX occurred at day 1 of germination. The early and selective appearance of a LOX form associated with lipid bodies at this stage of development is discussed.
IPB Mainnav Search