zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 8 von 8.

Publikation

Otto, M.; Naumann, C.; Brandt, W.; Wasternack, C.; Hause, B.; Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members Plants 5, 3, (2016) DOI: 10.3390/plants5010003

Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles.
Publikation

Bosch, M.; Wright, L. P.; Gershenzon, J.; Wasternack, C.; Hause, B.; Schaller, A.; Stintzi, A.; Jasmonic Acid and Its Precursor 12-Oxophytodienoic Acid Control Different Aspects of Constitutive and Induced Herbivore Defenses in Tomato Plant Physiol. 166, 396-410, (2014) DOI: 10.1104/pp.114.237388

The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Publikation

Goetz, S.; Hellwege, A.; Stenzel, I.; Kutter, C.; Hauptmann, V.; Forner, S.; McCaig, B.; Hause, G.; Miersch, O.; Wasternack, C.; Hause, B.; Role of cis-12-Oxo-Phytodienoic Acid in Tomato Embryo Development Plant Physiol. 158, 1715-1727, (2012) DOI: 10.1104/pp.111.192658

Oxylipins including jasmonates are signaling compounds in plant growth, development, and responses to biotic and abiotic stresses. In Arabidopsis (Arabidopsis thaliana) most mutants affected in jasmonic acid (JA) biosynthesis and signaling are male sterile, whereas the JA-insensitive tomato (Solanum lycopersicum) mutant jai1 is female sterile. The diminished seed formation in jai1 together with the ovule-specific accumulation of the JA biosynthesis enzyme allene oxide cyclase (AOC), which correlates with elevated levels of JAs, suggest a role of oxylipins in tomato flower/seed development. Here, we show that 35S::SlAOC-RNAi lines with strongly reduced AOC in ovules exhibited reduced seed set similarly to the jai1 plants. Investigation of embryo development of wild-type tomato plants showed preferential occurrence of AOC promoter activity and AOC protein accumulation in the developing seed coat and the embryo, whereas 12-oxo-phytodienoic acid (OPDA) was the dominant oxylipin occurring nearly exclusively in the seed coat tissues. The OPDA- and JA-deficient mutant spr2 was delayed in embryo development and showed an increased programmed cell death in the developing seed coat and endosperm. In contrast, the mutant acx1a, which accumulates preferentially OPDA and residual amount of JA, developed embryos similar to the wild type, suggesting a role of OPDA in embryo development. Activity of the residual amount of JA in the acx1a mutant is highly improbable since the known reproductive phenotype of the JA-insensitive mutant jai1 could be rescued by wound-induced formation of OPDA. These data suggest a role of OPDA or an OPDA-related compound for proper embryo development possibly by regulating carbohydrate supply and detoxification.
Publikation

Isayenkov, S.; Mrosk, C.; Stenzel, I.; Strack, D.; Hause, B.; Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices Plant Physiol. 139, 1401-1410, (2005) DOI: 10.1104/pp.105.069054

During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.
Publikation

Gerhardt, B.; Fischer, K.; Balkenhohl, T. J.; Pohnert, G.; Kühn, H.; Wasternack, C.; Feussner, I.; Lipoxygenase-mediated metabolism of storage lipids in germinating sunflower cotyledons and β-oxidation of (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid by the cotyledonary glyoxysomes Planta 220, 919-930, (2005) DOI: 10.1007/s00425-004-1408-1

During the early stages of germination, a lipid-body lipoxygenase is expressed in the cotyledons of sunflowers (Helianthus annuus L.). In order to obtain evidence for the in vivo activity of this enzyme during germination, we analyzed the lipoxygenase-dependent metabolism of polyunsaturated fatty acids esterified in the storage lipids. For this purpose, lipid bodies were isolated from etiolated sunflower cotyledons at different stages of germination, and the storage triacylglycerols were analyzed for oxygenated derivatives. During the time course of germination the amount of oxygenated storage lipids was strongly augmented, and we detected triacylglycerols containing one, two or three residues of (9Z,11E,13S)-13-hydro(pero)xy-octadeca-9,11-dienoic acid. Glyoxysomes from etiolated sunflower cotyledons converted (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid to (9Z,11E)-13-oxo-octadeca-9,11-dienoic acid via an NADH-dependent dehydrogenase reaction. Both oxygenated fatty acid derivatives were activated to the corresponding CoA esters and subsequently metabolized to compounds of shorter chain length. Cofactor requirement and formation of acetyl-CoA indicate degradation via β-oxidation. However, β-oxidation only proceeded for two consecutive cycles, leading to accumulation of a medium-chain metabolite carrying an oxo group at C-9, equivalent to C-13 of the parent (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid. Short-chain β-oxidation intermediates were not detected during incubation. Similar results were obtained when 13-hydroxy octadecanoic acid was used as β-oxidation substrate. On the other hand, the degradation of (9Z,11E)-octadeca-9,11-dienoic acid was accompanied by the appearance of short-chain β-oxidation intermediates in the reaction mixture. The results suggest that the hydroxyl/oxo group at C-13 of lipoxygenase-derived fatty acids forms a barrier to continuous β-oxidation by glyoxysomes.
Publikation

Hause, B.; Maier, W.; Miersch, O.; Kramell, R.; Strack, D.; Induction of Jasmonate Biosynthesis in Arbuscular Mycorrhizal Barley Roots Plant Physiol. 130, 1213-1220, (2002) DOI: 10.1104/pp.006007

Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells. The concomitant gene expression indicates that jasmonates are generated and act within arbuscule-containing cells. By use of a near-synchronous mycorrhization, analysis of temporal expression patterns showed the occurrence of transcript accumulation 4 to 6 d after the appearance of the first arbuscules. This suggests that the endogenous rise in jasmonates might be related to the fully established symbiosis rather than to the recognition of interacting partners or to the onset of interaction. Because the plant supplies the fungus with carbohydrates, a model is proposed in which the induction of JA biosynthesis in colonized roots is linked to the stronger sink function of mycorrhizal roots compared with nonmycorrhizal roots.
Publikation

Görschen, E.; Dunaeva, M.; Hause, B.; Reeh, I.; Wasternack, C.; Parthier, B.; Expression of the ribosome-inactivating protein JIP60 from barley in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation Planta 202, 470-478, (1997) DOI: 10.1007/s004250050151

In this paper we report the in-planta activity of the ribosome-inactivating protein JIP60, a 60-kDa jasmonate-induced protein from barley (Hordeum vulgare L.), in transgenic tobacco (Nicotiana tabacum L.) plants. All plants expressing the complete JIP60 cDNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited conspicuous and similar phenotypic alterations, such as slower growth, shorter internodes, lanceolate leaves, reduced root development, and premature senescence of leaves. Microscopic inspection of developing leaves showed a loss of residual meristems and higher degree of vacuolation of mesophyll cells as compared to the wild type. When probed with an antiserum which was immunoreactive against both the N- and the C-terminal half of JIP60, a polypeptide with a molecular mass of about 30 kDa, most probably a processed JIP60 product, could be detected. Phenotypic alterations could be correlated with the differences in the detectable amount of the JIP60 mRNA and processed JIP60 protein. The protein biosynthesis of the transformants was characterized by an increased polysome/monosome ratio but a decreased in-vivo translation activity. These findings suggest that JIP60 perturbs the translation machinery in planta. An immunohistological analysis using the JIP60 antiserum indicated that the immunoreactive polypeptide(s) are located mainly in the nucleus of transgenic tobacco leaf cells and to a minor extent in the cytoplasm.
Publikation

Feussner, I.; Hause, B.; Nellen, A.; Wasternack, C.; Kindl, H.; Lipid-body lipoxygenase is expressed in cotyledons during germination prior to other lipoxygenase forms Planta 198, 288-293, (1996) DOI: 10.1007/BF00206255

Lipid bodies are degraded during germination. Whereas some proteins, e.g. oleosins, are synthesized during the formation of lipid bodies of maturating seeds, a new set of proteins, including a specific form of lipoxygenase (LOX; EC 1.13.11.12), is detectable in lipid bodies during the stage of fat degradation in seed germination. In cotyledons of cucumber (Cucumis sativus L.) seedlings at day 4 of germination, the most conspicuous staining with anti-LOX antibodies was observed in the cytosol. At very early stages of germination, however, the LOX form present in large amounts and synthesized preferentially was the lipid-body LOX. This was demonstrated by immunocytochemical staining of cotyledons from 1-h and 24-h-old seedlings: the immunodecoration of sections of 24-h-old seedlings with anti-LOX antiserum showed label exclusively correlated with lipid bodies of around 3 μm in diameter. In accordance, the profile of LOX protein isolated from lipid bodies during various stages of germination showed a maximum at day 1. By measuring biosynthesis of the protein in vivo we demonstrated that the highest rates of synthesis of lipid-body LOX occurred at day 1 of germination. The early and selective appearance of a LOX form associated with lipid bodies at this stage of development is discussed.
IPB Mainnav Search