zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 8 von 8.

Publikation

Abdala, G.; Miersch, O.; Kramell, R.; Vigliocco, A.; Agostini, E.; Forchetti, G.; Alemano, S.; Jasmonate and octadecanoid occurrence in tomato hairy roots. Endogenous level changes in response to NaCl Plant Growth Regul. 40, 21-27, (2003) DOI: 10.1023/A:1023016412454

Jasmonic acid biosynthesis occurs in leaves and there is also evidence of a similar pathway in roots. The expression of lipoxygenase, allene oxide cyclase and low amounts of transcripts of allene oxide synthase in tomato roots indicates that some steps of the jasmonate synthesis may occur in these organs. Thus, the aim of the present work was to study the jasmonate and octadecanoid occurrence in tomato roots using isolated cultures of hairy roots. These were obtained by the transformation of cv. Pera roots with Agrobacterium rhyzogenes. Also we investigated the effect of NaCl stress on the endogenous levels of these compounds. Jasmonic acid, 12-oxophytodienoic acid and their methylated derivatives, as well as a jasmonate-isoleucine conjugate, were present in control hairy roots of 30 d of culture. The 12-oxophytodienoic acid and its methylated derivative showed higher levels than jasmonic acid and its methylated form, although the content of the conjugate was the same as that of jasmonic acid. After salinization of hairy roots for 14, 20 and 30 d, free jasmonates and octadecanoids were measured. Fourteen days after salt treatment, increased levels of these compounds were found, jasmonic acid and 12-oxophytodienoic acid showed the most remarkable rise. 11-OH-jasmonic acid was found at 14 d of culture in control and salt-treated hairy roots; whereas the 12-OH- form of jasmonic acid was only detected in the salt-treated hairy roots. Agrobacterium rhizogenes cultures did not produce jasmonates and/or octadecanoids.
Publikation

Nibbe, M.; Hilpert, B.; Wasternack, C.; Miersch, O.; Apel, K.; Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes Planta 216, 120-128, (2002) DOI: 10.1007/s00425-002-0907-1

The jasmonic acid (JA)-dependent regulation of the Thi2.1 gene had previously been exploited for setting up a genetic screen for the isolation of signal transduction mutants of Arabidopsis thaliana (L.) Heynh. that constitutively express the thionin gene. Several cet mutants had been isolated which showed a constitutive expression of the thionin gene. These cet mutants, except for one, also showed spontaneous leaf cell necrosis and were up-regulated in the expression of the PR1 gene, reactions often associated with the systemic acquired resistance (SAR) pathway. Four of these cet mutants, cet1, cet2, cet3 and cet4.1 were crossed with the fad triple and coi1 mutants that are blocked at two steps within the JA-dependent signaling pathway, and with transgenic NahG plants that are deficient in salicylic acid (SA) and are unable to activate SAR. Analysis of the various double-mutant lines revealed that the four cet genes act within a signaling cascade at or prior to branch points from which not only JA-dependent signals but also SA-dependent signaling and cell death pathways diverge.
Publikation

Abdala, G.; Castro, G.; Miersch, O.; Pearce, D.; Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum) Plant Growth Regul. 36, 121-126, (2002) DOI: 10.1023/A:1015065011536

Among the multiple environmental signals and hormonal factors regulatingpotato plant morphogenesis and controlling tuber induction, jasmonates (JAs)andgibberellins (GAs) are important components of the signalling pathways in theseprocesses. In the present study, with Solanum tuberosum L.cv. Spunta, we followed the endogenous changes of JAs and GAs during thedevelopmental stages of soil-grown potato plants. Foliage at initial growthshowed the highest jasmonic acid (JA) concentration, while in roots the highestcontent was observed in the stage of tuber set. In stolons at the developmentalstage of tuber set an important increase of JA was found; however, in tubersthere was no change in this compound during tuber set and subsequent growth.Methyl jasmonate (Me-JA) in foliage did not show the same pattern as JA; Me-JAdecreased during the developmental stages in which it was monitored, meanwhileJA increased during those stages. The highest total amount of JAs expressed asJA + Me-JA was found at tuber set. A very important peak ofJA in roots was coincident with that observed in stolons at tuber set. Also, aprogressive increase of this compound in roots was shown during the transitionof stolons to tubers. Of the two GAs monitored, gibberellic acid(GA3) was the most abundant in all the organs. While GA1and GA3 were also found in stolons at the time of tuber set, noothermeasurements of GAs were obtained for stolons at previous stages of plantdevelopment. Our results indicate that high levels of JA and GAs are found indifferent tissues, especially during stolon growth and tuber set.
Publikation

Wasternack, C.; Hause, B.; Stressabwehr und Entwicklung: Jasmonate — chemische Signale in Pflanzen Biologie in unserer Zeit 30, 312-320, (2000) DOI: 10.1002/1521-415X(200011)30:6<312::AID-BIUZ312>3.0.CO;2-8

Chemische Signale wurden bereits im 19.Jahrhundert als Regulatoren von Wachstum und Entwicklung der Pflanzen postuliert.In den letzten 70 Jahren wurde die Wirkungsweise der klassischen Pflanzenhormone wie der Auxine, Gibberelline, Cytokinine, Ethylen und Abscisinsäure aufgeklärt. Doch erst im letzten Jahrzehnt entdeckte man die Bedeutung der Brassinosteroide, der Peptidhormone und der Jasmonate.
Publikation

Ortel, B.; Atzorn, R.; Hause, B.; Feussner, I.; Miersch, O.; Wasternack, C.; Jasmonate-induced gene expression of barley (Hordeum vulgare) leaves - the link between jasmonate and abscisic acid Plant Growth Regul. 29, 113-122, (1999) DOI: 10.1023/A:1006212017458

In barley leaves a group of genes is expressed in response to treatment with jasmonates and abscisic acid (ABA) [21]. One of these genes coding for a jasmonate-induced protein of 23 kDa (JIP-23) was analyzed to find out the link between ABA and jasmonates by recording its expression upon modulating independently, the endogenous level of both of them. By use of inhibitors of JA synthesis and ABA degradation, and the ABA-deficient mutant Az34, as well as of cultivar-specific differences, it was shown that endogenous jasmonate increases are necessary and sufficient for expression of this gene. The endogenous rise of ABA did not induce synthesis of JIP-23, whereas exogenous ABA did not act via jasmonates. Different signalling pathways are suggested and discussed.
Publikation

Görschen, E.; Dunaeva, M.; Hause, B.; Reeh, I.; Wasternack, C.; Parthier, B.; Expression of the ribosome-inactivating protein JIP60 from barley in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation Planta 202, 470-478, (1997) DOI: 10.1007/s004250050151

In this paper we report the in-planta activity of the ribosome-inactivating protein JIP60, a 60-kDa jasmonate-induced protein from barley (Hordeum vulgare L.), in transgenic tobacco (Nicotiana tabacum L.) plants. All plants expressing the complete JIP60 cDNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited conspicuous and similar phenotypic alterations, such as slower growth, shorter internodes, lanceolate leaves, reduced root development, and premature senescence of leaves. Microscopic inspection of developing leaves showed a loss of residual meristems and higher degree of vacuolation of mesophyll cells as compared to the wild type. When probed with an antiserum which was immunoreactive against both the N- and the C-terminal half of JIP60, a polypeptide with a molecular mass of about 30 kDa, most probably a processed JIP60 product, could be detected. Phenotypic alterations could be correlated with the differences in the detectable amount of the JIP60 mRNA and processed JIP60 protein. The protein biosynthesis of the transformants was characterized by an increased polysome/monosome ratio but a decreased in-vivo translation activity. These findings suggest that JIP60 perturbs the translation machinery in planta. An immunohistological analysis using the JIP60 antiserum indicated that the immunoreactive polypeptide(s) are located mainly in the nucleus of transgenic tobacco leaf cells and to a minor extent in the cytoplasm.
Publikation

Feussner, I.; Hause, B.; Nellen, A.; Wasternack, C.; Kindl, H.; Lipid-body lipoxygenase is expressed in cotyledons during germination prior to other lipoxygenase forms Planta 198, 288-293, (1996) DOI: 10.1007/BF00206255

Lipid bodies are degraded during germination. Whereas some proteins, e.g. oleosins, are synthesized during the formation of lipid bodies of maturating seeds, a new set of proteins, including a specific form of lipoxygenase (LOX; EC 1.13.11.12), is detectable in lipid bodies during the stage of fat degradation in seed germination. In cotyledons of cucumber (Cucumis sativus L.) seedlings at day 4 of germination, the most conspicuous staining with anti-LOX antibodies was observed in the cytosol. At very early stages of germination, however, the LOX form present in large amounts and synthesized preferentially was the lipid-body LOX. This was demonstrated by immunocytochemical staining of cotyledons from 1-h and 24-h-old seedlings: the immunodecoration of sections of 24-h-old seedlings with anti-LOX antiserum showed label exclusively correlated with lipid bodies of around 3 μm in diameter. In accordance, the profile of LOX protein isolated from lipid bodies during various stages of germination showed a maximum at day 1. By measuring biosynthesis of the protein in vivo we demonstrated that the highest rates of synthesis of lipid-body LOX occurred at day 1 of germination. The early and selective appearance of a LOX form associated with lipid bodies at this stage of development is discussed.
Publikation

Abdala, G.; Castro, G.; Guiñazú, M. M.; Tizio, R.; Miersch, O.; Occurrence of jasmonic acid in organs of Solanum tuberosum L. and its effect on tuberization Plant Growth Regul. 19, 139-143, (1996) DOI: 10.1007/BF00024580

The aims of this study were to demonstrate the endogenous presence of jasmonic acid (JA) in roots, stolons and periderm of new formed tubers, by means of bioassays, ELISA and GC-MS, and to test a microdrop bioassay using the leaflets of potato cuttings cultured in vitro. Our results confirm the existence of JA by bioassays and GC-MS in foliage, stolons, roots and tuber periderm.
IPB Mainnav Search