zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 8 von 8.

Publikation

Wasternack, C.; Determination of sex by jasmonate J. Integr. Plant Biol. 62, 162-164, (2020) DOI: 10.1111/jipb.12840

0
Publikation

Wasternack, C.; Termination in Jasmonate Signaling by MYC2 and MTBs Trends Plant Sci. 24, 667-669, (2019) DOI: 10.1016/j.tplants.2019.06.001

Jasmonic acid (JA) signaling can be switched off by metabolism of JA. The master regulator MYC2, interacting with MED25, has been shown to be deactivated by the bHLH transcription factors MTB1, MTB2, and MTB3. An autoregulatory negative feedback loop has been proposed for this termination in JA signaling.
Publikation

Wasternack, C.; New Light on Local and Systemic Wound Signaling Trends Plant Sci. 24, 102-105, (2019) DOI: 10.1016/j.tplants.2018.11.009

Electric signaling and Ca2+ waves were discussed to occur in systemic wound responses. Two new overlapping scenarios were identified: (i) membrane depolarization in two special cell types followed by an increase in systemic cytoplasmic Ca2+ concentration ([Ca2+]cyt), and (ii) glutamate sensed by GLUTAMATE RECEPTOR LIKE proteins and followed by Ca2+-based defense in distal leaves.
Publikation

Wasternack, C.; Feussner, I.; The Oxylipin Pathways: Biochemistry and Function Annu. Rev. Plant Biol. 69, 363-386, (2018) DOI: 10.1146/annurev-arplant-042817-040440

Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Publikation

Wasternack, C.; Hause, B.; A Bypass in Jasmonate Biosynthesis – the OPR3-independent Formation Trends Plant Sci. 23, 276-279, (2018) DOI: 10.1016/j.tplants.2018.02.011

For the first time in 25 years, a new pathway for biosynthesis of jasmonic acid (JA) has been identified. JA production takes place via 12-oxo-phytodienoic acid (OPDA) including reduction by OPDA reductases (OPRs). A loss-of-function allele, opr3-3, revealed an OPR3-independent pathway converting OPDA to JA.
Publikation

Feussner, I.; Wasternack, C.; The lipoxygenase pathway Annu. Rev. Plant Biol. 53, 275-297, (2002) DOI: 10.1146/annurev.arplant.53.100301.135248

Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.
Publikation

Feussner, I.; Kühn, H.; Wasternack, C.; Lipoxygenase-dependent degradation of storage lipids Trends Plant Sci. 6, 268-273, (2001) DOI: 10.1016/S1360-1385(01)01950-1

Oilseed germination is characterized by the mobilization of storage lipids as a carbon source for the germinating seedling. In spite of the importance of lipid mobilization, its mechanism is only partially understood. Recent data suggest that a novel degradation mechanism is initiated by a 13-lipoxygenase during germination, using esterified fatty acids specifically as substrates. This 13-lipoxygenase reaction leads to a transient accumulation of ester lipid hydroperoxides in the storage lipids, and the corresponding oxygenated fatty acid moieties are preferentially removed by specific lipases. The free hydroperoxy fatty acids are subsequently reduced to their hydroxy derivatives, which might in turn undergo β-oxidation.
Publikation

Wasternack, C.; Parthier, B.; Jasmonate-signalled plant gene expression Trends Plant Sci. 2, 302-307, (1997) DOI: 10.1016/S1360-1385(97)89952-9

Jasmonic acid is distributed throughout higher plants, synthesized from linolenic acid via the octadecanoic pathway. An important and probably essential role seems to be its operation as a ‘master switch’, responsible for the activation of signal transduction pathways in response to predation and pathogen attack. Proteins encoded by jasmonate-induced genes include enzymes of alkaloid and phytoalexin synthesis, storage proteins, cell wall constituents and stress protectants. The wound-induced formation of proteinase inhibitors is a well-studied example, in which jasmonic acid combines with abscisic acid and ethylene to protect the plant from predation.
IPB Mainnav Search