zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 11.

Publikation

Wasternack, C.; Hause, B.; OPDA-Ile – a new JA-Ile-independent signal? Plant Signal Behav. 11, e1253646, (2016) DOI: 10.1080/15592324.2016.1253646

Expression takes place for most of the jasmonic acid (JA)-induced genes in a COI1-dependent manner via perception of its conjugate JA-Ile in the SCFCOI1-JAZ co-receptor complex. There are, however, numerous genes and processes, which are preferentially induced COI1-independently by the precursor of JA, 12-oxo-phytodienoic acid (OPDA). After recent identification of the Ile-conjugate of OPDA, OPDA-Ile, biological activity of this compound could be unequivocally proven in terms of gene expression. Any interference of OPDA, JA, or JA-Ile in OPDA-Ile-induced gene expression could be excluded by using different genetic background. The data suggest individual signaling properties of OPDA-Ile. Future studies for analysis of an SCFCOI1-JAZ co-receptor-independent route of signaling are proposed.
Publikation

Wasternack, C.; Goetz, S.; Hellwege, A.; Forner, S.; Strnad, M.; Hause, B.; Another JA/COI1-independent role of OPDA detected in tomato embryo development Plant Signal Behav. 7, 1349-1353, (2012) DOI: 10.4161/psb.21551

Jasmonates (JAs) are ubiquitously occurring signaling compounds in plants formed in response to biotic and abiotic stress as well as in development. (+)-7-iso-jasmonoyl isoleucine, the bioactive JA, is involved in most JA-dependent processes mediated by the F-box protein COI1 in a proteasome-dependent manner. However, there is an increasing number of examples, where the precursor of JA biosynthesis, cis-(+)-12-oxophytodienoic acid (OPDA) is active in a JA/COI1-independent manner. Here, we discuss those OPDA-dependent processes, thereby giving emphasis on tomato embryo development. Recent data on seed coat-generated OPDA and its role in embryo development is discussed based on biochemical and genetic evidences.
Publikation

Wasternack, C.; Xie, D.; The genuine ligand of a jasmonic acid receptor: Improved analysis of jasmonates is now required Plant Signal Behav. 5, 337-340, (2010) DOI: 10.4161/psb.5.4.11574

Jasmonic acid (JA), its metabolites, such as the methyl ester or amino acid conjugates as well as its precursor 12-oxophytodienoic acid (OPDA) are lipid-derived signals. JA, OPDA and JA-amino acid conjugates are known to function as signals in plant stress responses and development. More recently, formation of JA-amino acid conjugates and high biological activity of JA-Isoleucine (JA-Ile) were found to be essential in JA signalling. A breakthrough was the identification of JAZ proteins which interact with the F-box protein COI1 if JA-Ile is bound. This interaction leads to proteasomal degradation of JAZs being negative regulators of JA-induced transcription. Surprisingly, a distinct stereoisomer of JA-Ile, the (+)-7-iso-JA-Ile ((3R,7S) form) is most active. Coronatine, a bacterial phytotoxine with an identical stereochemistry at the cyclopentanone ring, has a similar bioactivity . This was explained by the recent identification of COI1 as the JA receptor and accords well with molecular modelling studies. Whereas over the last two decades JA was quantified to describe any JA dependent process, now we have to take into account a distinct stereoisomer of JA-Ile. Until recently a quantitative analysis of (+)-7-iso-JA-Ile was missing presumable due to its equilibration to (-)-JA-Ile. Now such an analysis was achieved. These aspects will be discussed based on our new knowledge on JA perception and signalling.
Publikation

Guranowski, A.; Miersch, O.; Staswick, P. E.; Suza, W.; Wasternack, C.; Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1) FEBS Lett. 581, 815-820, (2007) DOI: 10.1016/j.febslet.2007.01.049

Jasmonate:amino acid synthetase (JAR1) is involved in the function of jasmonic acid (JA) as a plant hormone. It catalyzes the synthesis of several JA‐amido conjugates, the most important of which appears to be JA‐Ile. Structurally, JAR1 is a member of the firefly luciferase superfamily that comprises enzymes that adenylate various organic acids. This study analyzed the substrate specificity of recombinant JAR1 and determined whether it catalyzes the synthesis of mono‐ and dinucleoside polyphosphates, which are side‐reaction products of many enzymes forming acyl ∼ adenylates. Among different oxylipins tested as mixed stereoisomers for substrate activity with JAR1, the highest rate of conversion to Ile‐conjugates was observed for (±)‐JA and 9,10‐dihydro‐JA, while the rate of conjugation with 12‐hydroxy‐JA and OPC‐4 (3‐oxo‐2‐(2Z ‐pentenyl)cyclopentane‐1‐butyric acid) was only about 1–2% that for (±)‐JA. Of the two stereoisomers of JA, (−)‐JA and (+)‐JA, rate of synthesis of the former was about 100‐fold faster than for (+)‐JA. Finally, we have demonstrated that (1) in the presence of ATP, Mg2+, (−)‐JA and tripolyphosphate the ligase produces adenosine 5′‐tetraphosphate (p4A); (2) addition of isoleucine to that mixture halts the p4A synthesis; (3) the enzyme produces neither diadenosine triphosphate (Ap3A) nor diadenosine tetraphosphate (Ap4A) and (4) Ap4A cannot substitute ATP as a source of adenylate in the complete reaction that yields JA‐Ile.
Publikation

Schüler, G.; Mithöfer, A.; Baldwin, I. T.; BERGER, S.; Ebel, J.; Santos, J. G.; Herrmann, G.; Hölscher, D.; Kramell, R.; Kutchan, T. M.; Maucher, H.; Schneider, B.; Stenzel, I.; Wasternack, C.; Boland, W.; Coronalon: a powerful tool in plant stress physiology FEBS Lett. 563, 17-22, (2004) DOI: 10.1016/S0014-5793(04)00239-X

Coronalon, a synthetic 6‐ethyl indanoyl isoleucine conjugate, has been designed as a highly active mimic of octadecanoid phytohormones that are involved in insect and disease resistance. The spectrum of biological activities that is affected by coronalon was investigated in nine different plant systems specifically responding to jasmonates and/or 12‐oxo‐phytodienoic acid. In all bioassays analyzed, coronalon demonstrated a general strong activity at low micromolar concentrations. The results obtained showed the induction of (i) defense‐related secondary metabolite accumulation in both cell cultures and plant tissues, (ii) specific abiotic and biotic stress‐related gene expression, and (iii) root growth retardation. The general activity of coronalon in the induction of plant stress responses together with its simple and efficient synthesis suggests that this compound might serve as a valuable tool in the examination of various aspects in plant stress physiology. Moreover, coronalon might become employed in agriculture to elicit plant resistance against various aggressors.
Publikation

Churin, J.; Hause, B.; Feussner, I.; Maucher, H. P.; Feussner, K.; Börner, T.; Wasternack, C.; Cloning and expression of a new cDNA from monocotyledonous plants coding for a diadenosine 5′,5′′′-P1,P4-tetraphosphate hydrolase from barley (Hordeum vulgare) FEBS Lett. 431, 481-485, (1998) DOI: 10.1016/S0014-5793(98)00819-9

From a cDNA library generated from mRNA of white leaf tissues of the ribosome‐deficient mutant ‘albostrians' of barley (Hordeum vulgare cv. Haisa) a cDNA was isolated carrying 54.2% identity to a recently published cDNA which codes for the diadenosine‐5′,5′′′‐P1,P4‐tetraphosphate (Ap4A) hydrolase of Lupinus angustifolius (Maksel et al. (1998) Biochem. J. 329, 313–319), and 69% identity to four partial peptide sequences of Ap4A hydrolase of tomato. Overexpression in Escherichia coli revealed a protein of about 19 kDa, which exhibited Ap4A hydrolase activity and cross‐reactivity with an antibody raised against a purified tomato Ap4A hydrolase (Feussner et al. (1996) Z. Naturforsch. 51c, 477–486). Expression studies showed an mRNA accumulation in all organs of a barley seedling. Possible functions of Ap4A hydrolase in plants will be discussed.
Publikation

Bohlmann, H.; Vignutelli, A.; Hilpert, B.; Miersch, O.; Wasternack, C.; Apel, K.; Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway FEBS Lett. 437, 281-286, (1998) DOI: 10.1016/S0014-5793(98)01251-4

In seedlings of Arabidopsis thaliana the thionin gene Thi2.1 is inducible by methyl jasmonate, wounding, silver nitrate, coronatine, and sorbitol. We have used a biochemical and genetic approach to test the signal transduction of these different inducers. Both exogenously applied jasmonates and jasmonates produced endogenously upon stress induction, lead to GUS expression in a Thi2.1 promoter-uidA transgenic line. No GUS expression was observed in a coi1 mutant background which lacks jasmonate perception whereas methyl jasmonate and coronatine but not the other inducers were able to overcome the block in jasmonic acid production in a fad3-2 fad7-2 fad8 mutant background. Our results show conclusively that all these inducers regulate Thi2-1 gene expression via the octadecanoid pathway.
Publikation

Kramell, R.; Miersch, O.; Hause, B.; Ortel, B.; Parthier, B.; Wasternack, C.; Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves FEBS Lett. 414, 197-202, (1997) DOI: 10.1016/S0014-5793(97)01005-3

Leaves of barley (Hordeum vulgare L. cv. Salome ) treated with jasmonic acid (JA), its methyl ester (JM), or its amino acid conjugates exhibit up‐regulation of specific genes and down‐regulation of house‐keeping genes. This transcriptional regulation exhibits several specificities. (i) The (−)‐enantiomers are more active, and conjugates are mainly active if they carry an l ‐amino acid moiety. (ii) The various JA‐responsive genes respond differentially to enantiomeric and chiralic forms. (iii) Both JA and its amino acid conjugates exhibiting no or negligible interconversion induce/repress genes.
Publikation

Görschen, E.; Dunaeva, M.; Reeh, I.; Wasternack, C.; Overexpression of the jasmonate-inducible 23 kDa protein (JIP 23) from barley in transgenic tobacco leads to the repression of leaf proteins FEBS Lett. 419, 58-62, (1997) DOI: 10.1016/S0014-5793(97)01433-6

We investigated transgenic tobacco lines which express different amounts of the barley JIP 23. In these plants the amount of several proteins decreased proportionally to increasing amounts of JIP 23 whereas the transcript levels were constant as determined for the small and the large subunit of RuBPCase. However, the translation initiation of the rbcS transcript was found to be less efficient than in the wild type. In contrast, the jip 23 transcript was efficiently initiated, indicating that no unspecific impairment of initiation occurred. The data suggest that the barley JIP 23 leads to discrimination among certain tobacco transcripts during translation initiation.
Publikation

Feussner, K.; Feussner, I.; Leopold, I.; Wasternack, C.; Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato - the first stress-induced UBC of higher plants FEBS Lett. 409, 211-215, (1997) DOI: 10.1016/S0014-5793(97)00509-7

A clone of an ubiquitin‐conjugating enzyme (UBC) was isolated from a λ‐ZAP‐cDNA library, generated from mRNA of tomato (Lycopersicon esculentum) cells grown in suspension for 3 days. The open reading frame called Le UBC1, encodes for a polypeptide with a predicted molecular mass of 21.37 kDa, which was confirmed by bacterial overexpression and SDS‐PAGE. Database searches with Le UBC1 showed highest sequence similarities to UBC1 of bovine and yeast. By Southern blot analysis Le UBC1 was identified as a member of a small E2 subfamily of tomato, presumably consisting of at least two members. As revealed by Northern blot analysis Le UBC1 is constitutively expressed in an exponentially growing tomato cell culture. In response to heat shock an increase in Le UBC1‐mRNA was detectable. A strong accumulation of the Le UBC1‐transcript was observed by exposure to heavy metal stress which was performed by treatment with cadmium chloride (CdCl2). The cellular uptake of cadmium was controlled via ICP‐MS measurements. The data suggest that like in yeast, in plants a certain subfamily of UBC is specifically involved in the proteolytic degradation of abnormal proteins as result of stress.
IPB Mainnav Search