zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 12.

Publikation

Gharsallah, C.; Fakhfakh, H.; Grubb, D.; Gorsane, F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars AoB PLANTS 8, plw055, (2016) DOI: 10.1093/aobpla/plw055

Salinity is a constraint limiting plant growth and productivity of crops throughout the world. Understanding the mechanism underlying plant response to salinity provides new insights into the improvement of salt tolerance-crops of importance. In the present study, we report on the responses of twenty cultivars of tomato. We have clustered genotypes into scale classes according to their response to increased NaCl levels. Three local tomato genotypes, representative of different saline scale classes, were selected for further investigation. During early (0 h, 6 h and 12 h) and later (7 days) stages of the response to salt treatment, ion concentrations (Na + , K +  and Ca 2+ ), proline content, enzyme activities (catalase, ascorbate peroxidase and guiacol peroxidase) were recorded. qPCR analysis of candidate genes WRKY (8, 31and 39), ERF (9, 16 and 80), LeNHX (1, 3 and 4) and HKT (class I) were performed. A high K + , Ca 2 + and proline accumulation as well as a decrease of Na +  concentration-mediated salt tolerance. Concomitant with a pattern of high-antioxidant enzyme activities, tolerant genotypes also displayed differential patterns of gene expression during the response to salt stress.
Publikation

Rekik, I.; Drira, N.; Grubb, C. D.; Elleuch, A. Molecular characterization and evolution studies of a SERK like gene transcriptionally induced during somatic embryogenesis in Phoenix Dactylifera L v Deglet Nour Genetika 47, 323-337, (2015) DOI: 10.2298/GENSR1501323R

A somatic embryogenesis receptor kinase like (SERKL) cDNA, designated PhSERKL, was isolated from date palm (Phoenix Dactylifera L) using RACE PCR. PhSERKL protein shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, a transmembrane domain, and kinase domains. Phylogenetic analyses using PHYLIP and Notung 2.7 programs suggest that the SERK proteins of some plant species resulted from relatively ancient duplication events. We predict an ancestor protein of monocots and dicots SERK using FASTML program. Somatic embryogenic cultures of date palm were established following transfer of callus cultures to medium containing 2, 4-dichlorophenoxyacetic acid. The role of PhSERKL gene during establishment of somatic embryogenesis in culture was investigated using quantitative real-time PCR. PhSERKL gene was highly expressed during embryogenic competence acquisition and globular embryo formation in culture. Overall, levels of expression of PhSERKL gene were lower in nonembryogenic tissues and organs than in embryogenic callus.
Publikation

Hamdi, I.; Elleuch, A.; Bessaies, N.; Grubb, C. D.; Fakhfakh, H. First report of Citrus viroid V in North Africa J Gen Plant Pathol 81, 87-91, (2015) DOI: 10.1007/s10327-014-0556-9

We tested citrus samples from Tunisia using reverse transcription-polymerase chain reaction (RT-PCR), and for the first time, Citrus viroid V (CVd-V) was reported in North Africa. Fourteen of 38 tested citrus trees were infected by CVd-V including the majority of varieties grown in Tunisia. Some RT-PCR results were also supported by biological indexing. After sequencing the RT-PCR products, three new CVd-V variants were identified, showing 80–91 % nucleotide sequence identity with those reported previously. Based on phylogenetic analysis using all CVd-V sequences in GenBank, two main CVd-V groups were identified. Furthermore, construction of a genetic network of the detected haplotypes using the same sequences shows a clear geographical structuring of Tunisian CVd-V variants.
Publikation

Floková, K.; Tarkowská, D.; Miersch, O.; Strnad, M.; Wasternack, C.; Novak, O. UHPLC-MS/MS based target profiling of stress-induced phytohormones Phytochemistry 105, 147-157, (2014) DOI: 10.1016/j.phytochem.2014.05.015

Stress-induced changes in phytohormone metabolite profiles have rapid effects on plant metabolic activity and growth. The jasmonates (JAs) are a group of fatty acid-derived stress response regulators with roles in numerous developmental processes. To elucidate their dual regulatory effects, which overlap with those of other important defence-signalling plant hormones such as salicylic acid (SA), abscisic acid (ABA) and indole-3-acetic acid (IAA), we have developed a highly efficient single-step clean-up procedure for their enrichment from complex plant matrices that enables their sensitive quantitative analysis using hyphenated mass spectrometry technique. The rapid extraction of minute quantities of plant material (less than 20 mg fresh weight, FW) into cold 10% methanol followed by one-step reversed-phase polymer-based solid phase extraction significantly reduced matrix effects and increased the recovery of labile JA analytes. This extraction and purification protocol was paired with a highly sensitive and validated ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method and used to simultaneously profile sixteen stress-induced phytohormones in minute plant material samples, including endogenous JA, several of its biosynthetic precursors and derivatives, as well as SA, ABA and IAA.
Publikation

Schneider, K.; Kienow, L.; Schmelzer, E.; Colby, T.; Bartsch, M.; Miersch, O.; Wasternack, C.; Kombrink, E.; Stuible, H.-P. A new type of peroxisomal acyl-coenzyme A synthetase from <EM>Arabidopsis thaliana</EM> has the catalytic capacity of activate biosynthetic precursors of jasmonic acid J. Biol. Chem. 280, 13962-13972, (2005)

0
Publikation

Gidda, K.S.; Miersch, O.; Schmidt, J.; Wasternack, C.; Varin, L. Biochemical and molecular characterization of a hydroxy-jasmonate sulfotransferase from Arabidopsis thaliana J. Biol. Chem. 278, 17895-17900, (2003) DOI: 10.1074/jbc.M211943200

12-Hydroxyjasmonate, also known as tuberonic acid, was first isolated from Solanum tuberosum and was shown to have tuber-inducing properties. It is derived from the ubiquitously occurring jasmonic acid, an important signaling molecule mediating diverse developmental processes and plant defense responses. We report here that the gene AtST2a from Arabidopsis thaliana encodes a hydroxyjasmonate sulfotransferase. The recombinant AtST2a protein was found to exhibit strict specificity for 11- and 12-hydroxyjasmonate with Km values of 50 and 10 µM, respectively. Furthermore, 12-hydroxyjasmonate and its sulfonated derivative are shown to be naturally occurring in A. thaliana. The exogenous application of methyljasmonate to A. thaliana plants led to increased levels of both metabolites, whereas treatment with 12-hydroxyjasmonate led to increased level of 12-hydroxyjasmonate sulfate without affecting the endogenous level of jasmonic acid. AtST2a expression was found to be induced following treatment with methyljasmonate and 12-hydroxyjasmonate. In contrast, the expression of the methyljasmonate-responsive gene Thi2.1, a marker gene in plant defense responses, is not induced upon treatment with 12-hydroxyjasmonate indicating the existence of independent signaling pathways responding to jasmonic acid and 12-hydroxyjasmonic acid. Taken together, the results suggest that the hydroxylation and sulfonation reactions might be components of a pathway that inactivates excess jasmonic acid in plants. Alternatively, the function of AtST2a might be to control the biological activity of 12-hydroxyjasmonic acid.
Publikation

Schilling, S.; Niestroj, A.J.; Rahfeld, J.-U.; Hoffmann, T.; Wermann, M.; Zunkel, K.; Wasternack, C.; Demuth, H.-U. Identification of human glutaminyl cyclase as a metalloenzyme - Potent inhibition by imidazole derivatives and heterocyclic chelators J. Biol. Chem. 278, 49773-49779, (2003)

0
Publikation

Li, G.; Goyal, G.S.; Abel, S.; Quiros, C.F. Inheritance of three major genes involved in the synthesis of aliphatic glucosinolates in <em>Brassica oleracea</em> J Amer Soc Hort Sci 126, 427 - 431, (2001)

0
Publikation

Ziegler, J.; Stenzel, I.; Hause, B.; Maucher, H.; Miersch, O.; Hamberg, M.; Grimm, M.; Ganal, M.; Wasternack, C. Molecular cloning of allene oxide cyclase: The enzyme establishing the stereochemistry of octadecanoids and jasmonates J. Biol. Chem. 275, 19132-19138, (2000) DOI: 10.1074/jbc.M002133200

Allene oxide cyclase (AOC) catalyses the stereospecific cyclisation of an unstable allene oxide to 9(S),13(S)-12-oxo-10,15(Z)-phytodienoic acid, the ultimate precursor of jasmonic acid. This enzyme has previously been purified, and two identical N-terminal peptides were found suggesting AOC to be a homodimeric protein. Furthermore, the native protein was N-terminal processed. Using degenerate primers, a PCR fragment could be generated from tomato, which was further used to isolate a full length cDNA clone of 1kb coding for a protein with 245 amino acids with a molecular mass of 26 kDa. Whereas expression of the whole coding region failed to detect AOC activity, a 5-'truncated protein showed high activity, suggesting that additional amino acids impair the enzymatic function. Steric analysis of the 12-oxo-phytodienoic acid formed by the recombinant AOC revealed exclusive (>99%) formation of the 9(S),13(S) enantiomer. Exclusive formation of this enantiomer was also found in wounded tomato leaves. Southern analysis and genetic mapping revealed the existence of a single gene for AOC located on chromosome 2 of tomato. Inspection of the N-terminus revealed the presence of a chloroplastic transit peptide, and the location of AOC protein in that compartment could be shown by immunohistochemical methods. Concomitant with the jasmonate levels, the accumulation of AOC mRNA was transiently induced after wounding of tomato leaves.
Publikation

Quint, M.; Melchinger, A.E.; Dussle, C.M.; Lübberstedt, T. Breeding for virus resistance in maize Genetika 32, 283-291, (2000)

0
IPB Mainnav Search