zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Ried, M. K.; Banhara, A.; Hwu, F.-Y.; Binder, A.; Gust, A. A.; Höfle, C.; Hückelhoven, R.; Nürnberger, T.; Parniske, M.; A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidis PLOS Pathog. 15, e1007747, (2019) DOI: 10.1371/journal.ppat.1007747

The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved.
Publikation

López-Carrasco, A.; Ballesteros, C.; Sentandreu, V.; Delgado, S.; Gago-Zachert, S.; Flores, R.; Sanjuán, R.; Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing PLOS Pathog. 13, e1006547, (2017) DOI: 10.1371/journal.ppat.1006547

Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.
Publikation

Rekik, I.; Drira, N.; Grubb, C. D.; Elleuch, A.; Molecular characterization and evolution studies of a SERK like gene transcriptionally induced during somatic embryogenesis in Phoenix Dactylifera L v Deglet Nour Genetika 47, 323-337, (2015) DOI: 10.2298/GENSR1501323R

A somatic embryogenesis receptor kinase like (SERKL) cDNA, designated PhSERKL, was isolated from date palm (Phoenix Dactylifera L) using RACE PCR. PhSERKL protein shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, a transmembrane domain, and kinase domains. Phylogenetic analyses using PHYLIP and Notung 2.7 programs suggest that the SERK proteins of some plant species resulted from relatively ancient duplication events. We predict an ancestor protein of monocots and dicots SERK using FASTML program. Somatic embryogenic cultures of date palm were established following transfer of callus cultures to medium containing 2, 4-dichlorophenoxyacetic acid. The role of PhSERKL gene during establishment of somatic embryogenesis in culture was investigated using quantitative real-time PCR. PhSERKL gene was highly expressed during embryogenic competence acquisition and globular embryo formation in culture. Overall, levels of expression of PhSERKL gene were lower in nonembryogenic tissues and organs than in embryogenic callus.
Publikation

De Nardi, B.; Dreos, R.; Del Terra, L.; Martellossi, C.; Asquini, E.; Tornincasa, P.; Gasperini, D.; Pacchioni, B.; Rathinavelu, R.; Pallavicini, A.; Graziosi, G.; Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance Genome 49, 1594-1605, (2006) DOI: 10.1139/g06-125

Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
Publikation

Quint, M.; Melchinger, A. E.; Dußle, C. M.; Lübberstedt, T.; Breeding for virus resistance in maize Genetika 32, 529-545, (2000)

Sugarcane mosaic virus (SCMV) is an important disease in maize, which is emerging in Germany since 1983. Using this pest as a model for the inheritance of oligogenic traits, we clarified the genetic ba­sis for resistance in early maturing European maize germplasm. Screening of 122 adapted European inbred lines identified three completely resistant lines, which were used for further analyses. The genetics of SCMV resis­tance was investigated by allelism tests in field experiments combined with QTL and bulked segregant analyses (BSA) on the marker level. QTL analyses revealed the presence of two major genes Scm1 and Scm2 plus three minor QTL. Involvement of Scm1 and Scm2 in the inheritance of SCMV resistance could be confirmed by BSA in a second cross. Breeders can make use of tightly linked STS markers for marker-assisted selection (MAS) as well as our SCMV resistant flint lines to improve their elite germplasm. Currently, recurrent backcrossing with phenotypic selection is the most appropriate and cost effective breeding method. With de­creasing costs of DNA chip technology, MAS can be competitive with phenotypic selection in the near future. Further objectives of our research are the isolation and cloning of Scm1 and Scm2. To achieve this goal we follow two different approaches. (1) Positional cloning based on more than 500 AFLP primer combinations resulted in Scm1/Scm2 specific markers with a resolution of approximately 0.2 cM in the respective re­gions. (2) Resistance gene analogues (RGAs), cosegregating with the tar­get genes are used to identify further candidate genes for transformation experiments.
IPB Mainnav Search