zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 12.

Publikation

Drost, H.-G.; Bellstädt, J.; Ó'Maoiléidigh, D. S.; Silva, A. T.; Gabel, A.; Weinholdt, C.; Ryan, P. T.; Dekkers, B. J. W.; Bentsink, L.; Hilhorst, H. W. M.; Ligterink, W.; Wellmer, F.; Grosse, I.; Quint, M. Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development Mol Biol Evol 33, 1158-1163, (2016) DOI: 10.1093/molbev/msw039

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints. 
Publikation

Drost, H.-G.; Gabel, A.; Grosse, I.; Quint, M. Evidence for Active Maintenance of Phylotranscriptomic Hourglass Patterns in Animal and Plant Embryogenesis Mol Biol Evol 32, 1221-1231, (2015) DOI: 10.1093/molbev/msv012

The developmental hourglass model has been used to describe the morphological transitions of related species throughout embryogenesis. Recently, quantifiable approaches combining transcriptomic and evolutionary information provided novel evidence for the presence of a phylotranscriptomic hourglass pattern across kingdoms. As its biological function is unknown it remains speculative whether this pattern is functional or merely represents a nonfunctional evolutionary relic. The latter would seriously hamper future experimental approaches designed to test hypotheses regarding its function. Here, we address this question by generating transcriptome divergence index (TDI) profiles across embryogenesis of Danio rerio, Drosophila melanogaster, and Arabidopsis thaliana. To enable meaningful evaluation of the resulting patterns, we develop a statistical test that specifically assesses potential hourglass patterns. Based on this objective measure we find that two of these profiles follow a statistically significant hourglass pattern with the most conserved transcriptomes in the phylotypic periods. As the TDI considers only recent evolutionary signals, this indicates that the phylotranscriptomic hourglass pattern is not a rudiment but possibly actively maintained, implicating the existence of some linked biological function associated with embryogenesis in extant species.
Publikation

Calderon-Villalobos, L. I.; Tan, X.; Zheng, N.; Estelle, M. Auxin Perception—Structural Insights Cold Spring Harb Perspect Biol 2, a005546, (2010) DOI: 10.1101/cshperspect.a005546

The identity of the auxin receptor(s) and the mechanism of auxin perception has been a subject of intense interest since the discovery of auxin almost a century ago. The development of genetic approaches to the study of plant hormone signaling led to the discovery that auxin acts by promoting degradation of transcriptional repressors called Aux/IAA proteins. This process requires a ubiquitin protein ligase (E3) called SCFTIR1 and related SCF complexes. Surprisingly, auxin works by directly binding to TIR1, the F-box protein subunit of this SCF. Structural studies demonstrate that auxin acts like a molecular glue, to stabilize the interaction between TIR1 and the Aux/IAA substrate. These exciting results solve an old problem in plant biology and reveal new mechanisms for E3 regulation and hormone perception.
Publikation

Abel, S.; Theologis, A. Odyssey of Auxin Cold Spring Harb Perspect Biol 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Publikation

Guranowski, A.; Miersch, O.; Staswick, P.E.; Suza, W.; Wasternack, C. Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1) FEBS Letters 581, 815-820, (2007) DOI: 10.1016/j.febslet.2007.01.049

0
Publikation

Flores, R.; Delgado, S.; Gas, M.E.; Carbonell, A.; Molina, D.; Gago, S.; de la Peña, M. Viroids: the minimal non-coding RNA's with autonomous replication FEBS Letters 567, 42-48, (2004)

0
Publikation

Morgan, K.E.; Zarembinski, T.I.; Theologis, A.; Abel, S. Biochemical characterization of recombinant polypeptides corresponding to the predicted ßαα-fold in Aux/IAA proteins FEBS Letters 454, 283-287, (1999)

The plant hormone indoleacetic acid (IAA or auxin) transcriptionally activates a select set of early genes. The Auxl IAA class of early auxin-responsive genes encodes a large family of short-lived, nuclear proteins. Aux/IAA polypeptides homo-and heterodimerize, and interact with auxin-response transcription factors (ARFs) via C-terminal regions conserved in both protein families. This shared region contains a predicted βαα motif similar to the prokaryotic β-Ribbon DNA binding domain, which mediates both protein dimerization and DNA recognition. Here, we show by circular dichroism spectroscopy and by chemical cross-linking experiments that recombinant peptides corresponding to the predicted βαα region of three Aux/IAA proteins from Arabidopsis thaliana contain substantial α-helical secondary structure and undergo homo- and heterotypic interactions in vitro. Our results indicate a similar biochemical function of the plant βαα domain and suggest that the βαα fold plays an important role in mediating combinatorial interactions of Aux/IAA and ARF proteins to specifically regulate secondary gene expression in response to auxin.
Publikation

Bohlmann, H.; Vignutelli, A.; Hilpert, B.; Miersch, O.; Wasternack, C.; Apel, K. Wounding and chemicals induce expression of the Arabidopsis gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway FEBS Letters 437, 281-286, (1998)

0
Publikation

Hertel, S.; Knöfel, H.-D.; Kramell, R.; Miersch, O. Partial purification and characterization of a jasmonic acid conjugate cleaving amidohydrolase from the fungus <EM>Botryodiplodia theobromae</EM> FEBS Letters 407, 105-110, (1997)

0
Publikation

Görschen, E.; Dunaeva, M.; Reeh, I.; Wasternack, C. Overexpression of the jasmonate inducible 23 kDa protein (JIP 23) from barley in transgenic tobacco leads to the repression of leaf proteins FEBS Letters 419, 58-62, (1997)

0
IPB Mainnav Search